Record Display for the EPA National Library Catalog

RECORD NUMBER: 19 OF 21

OLS Field Name OLS Field Data
Main Title Real-time monitoring for toxicity caused by harmful algal blooms and other water quality perturbations.
CORP Author Environmental Protection Agency, Washington, DC. National Center for Environmental Assessment.
Publisher National Center for Environmental Assessment--Washington Office, Office of Research and Development, U.S. Environmental Protection Agency,
Year Published 2001
Report Number EPA/600/R-01/103; NCEA-W-1089
Stock Number PB2002-104607
Subjects Algal blooms--Monitoring. ; Water quality biological assessment. ; Water--Pollution--Toxicology--Measurement.
Additional Subjects Algal blooms ; Toxicity ; Water quality management ; Environmental monitoring ; Water pollution sampling ; Pliesteria ; Laboratory tests ; Fish diseases ; Species diversity ; Coastal waters ; Fish kills ; United States ; Regulations ; Recommendations ; Fish ventilatory biomonitoring system
Internet Access
Description Access URL
http://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=2000TZVA.PDF
Holdings
Library Call Number Additional Info Location Last
Modified
Checkout
Status
NTIS  PB2002-104607 Most EPA libraries have a fiche copy filed under the call number shown. Check with individual libraries about paper copy. 01/01/1988
Collation 106 pages : illustrations
Abstract
This project, sponsored by EPA's Environmental Monitoring for Public Access and Community Tracking (EMPACT) program, evaluated the ability ofan automated biological monitoring system that measures fish ventilatoryresponses (ventiliatory rate, ventilatory depth, and cough rate) to detect developing toxic conditions in water. In laboratory tests, acutely toxic levels of both brevetoxin (PbTx-2) and toxic Pfiesteria piscicida cultures caused fish responses primarily through large increases in cough rate. In the field, the automated biomonitoring system operated continuously for 3 mo on the Chicamacomico River, a tributary to the Chesapeake Bay that has had a history of intermittent toxic algal blooms. Data gathered through this effort complemented chemical monitoring data collected by the Maryland Department of NaturalResources (DNR) as part of their Pfiesteria monitoring program. After evaluation of DNR personnel, the public could access the data at a DNR Internet web site. (www.dnr.statem.us/bay/ pfiesteria/00results.html) or receive more detailed information at aquaticpath.umd.ed/empact. The field biomonitor identified five fish response events. Increased conductivity combined with a substantial decrease in water temperature was the likely cause of one event, while contaminants (probably surfactants) released from inadequately rinsed particle filters producedanother response. The other three events, characterized by greatly increased cough rate (two events) or increased ventilation rate and depth (one event), did not have identified causes. Water quality variations did not correspond to the timing of the three events, analyses of water taken by an automated sampler were negative for the presence of Pfiesteria or chemicals that could be associated with the observed responses, and no fish kills occurred on the chicamacomico River during the monitoring period. Continuing activities to improve thebiomonitoring system include providing a change detection algorithm for fish ventilatory patterns that does not depend on a baseline monitoring period, integrating the fish biomonitor with other automated biomonitoring systems, and developing an expert system to better detect toxic events and distinguish them from fish responses to normal variations in ambient water quality conditions.
Notes
"November 2001." Includes bibliographical references (pages R-1-R-6). "EPA/600/R-01/103." Microfiche.