Record Display for the EPA National Library Catalog


OLS Field Name OLS Field Data
Main Title Air-sea interaction : laws and mechanisms /
Author Csanady, G. T.
Publisher Cambridge University Press,
Year Published 2001
OCLC Number 44313339
ISBN 0521792592; 9780521792592; 0521796806; 9780521796804
Subjects Ocean-atmosphere interaction. ; Oceanen. ; Lucht. ; Wisselwerking. ; Klimaat. ; Interaction mer-atmosphère. ; Météorologie maritime. ; Meer. ; Atmosphäre. ; Wechselwirkung.
Internet Access
Description Access URL
Sample text
Publisher description
Library Call Number Additional Info Location Last
EKBM  GC190.2.C73 2001 Research Triangle Park Library/RTP, NC 08/31/2011
Collation vii, 239 pages : illustrations, maps ; 26 cm
Includes bibliographical references (pages 225-236) and index.
Contents Notes
Ch. 1. The Transfer Laws of the Air-Sea Interface. 1.1. Introduction. 1.2. Flux and Resistance. 1.2.1. Momentum Transfer in Laminar Flow. 1.3. Turbulent Flow Over the Sea. 1.3.1. Turbulence, Eddies and Their Statistics. 1.3.2. The Air-side Surface Layer. 1.3.3. Properties of the Windsea. 1.4. Flux and Force in Air-Sea Momentum Transfer. 1.4.1. Charnock's Law. 1.4.2. Sea Surface Roughness. 1.4.3. Energy Dissipation. 1.4.4. Buoyancy and Turbulence. 1.5. The Evidence on Momentum Transfer. 1.5.1. Methods and Problems of Observation. 1.5.2. The Verdict of the Evidence. 1.5.3. Other Influences. 1.6. Sensible and Latent Heat Transfer. 1.6.1. Transfer of "Sensible" Heat by Conduction. 1.6.2. Transfer of Water Substance by Diffusion. 1.6.3. Heat and Vapor Transfer in Turbulent Flow. 1.6.4. Buoyancy Flux Correction. 1.6.5. Observed Heat and Vapor Transfer Laws. 1.6.6. Matrix of Transfer Laws. 1.6.7. Entropy Production. 1.7. Air-Sea Gas Transfer. 1.7.1. Gas Transfer in Turbulent Flow. 1.7.2. Methods and Problems of Observation. 1.7.3. The Evidence on Gas Transfer -- Ch. 2. Wind Waves and the Mechanisms of Air-Sea Transfer. 2.1. The Origin of Wind Waves. 2.1.1. Instability Theory. 2.1.2. Properties of Instability Waves. 2.2. The Wind Wave Phenomenon. 2.2.1. Wave Measures. 2.2.2. Wave Growth. 2.2.3. The Tail of the Characteristic Wave. 2.2.4. Short Wind Waves. 2.2.5. Laboratory Studies of Short Waves. 2.3. The Breaking of Waves. 2.3.1. Momentum Transfer in a Breaking Wave. 2.4. Mechanisms of Scalar Property Transfer. 2.4.1. Water-side Resistance. 2.4.2. Air-side Resistance. 2.5. Pathways of Air-Sea Momentum Transfer. Ch. 3. Mixed Layers in Contact. 3.1. Mixed Layers, Thermoclines, and Hot Towers. 3.2. Mixed Layer Turbulence. 3.3. Laws of Entrainment. 3.3.1. Entrainment in a Mixed Layer Heated from Below. 3.3.2. Mixed Layer Cooled from Above. 3.3.3. Shear and Breaker Induced Entrainment. 3.4. A Tour of Mixed Layers. 3.4.1. The Atmospheric Mixed Layer Under the Trade Inversion. 3.4.2. Stratocumulus-topped Mixed Layers. 3.4.3. Oceanic Mixed Layers. 3.4.4. Equatorial Upwelling. 3.5. Mixed Layer Interplay. 3.5.1. Mixed Layer Budgets. 3.5.2. Atmospheric Temperature and Humidity Budgets. 3.5.3. Oceanic Temperature Budget. 3.5.4. Combined Budgets. 3.5.3. Banker's Air-Sea Interaction Cycles -- Ch. 4. Hot Towers. 4.1. Thermodynamics of Atmospheric Hot Towers. 4.1.1. The Drying-out Process in Hot Towers. 4.1.2. The Thermodynamic Cycle of the Overturning Circulation. 4.2. Ascent of Moist Air in Hot Towers. 4.2.1. Hot Tower Clusters. 4.2.2. Squall Lines. 4.3. Hurricanes. 4.3.1. Entropy Sources in Hurricanes. 4.3.2. Thermodynamic Cycle of Hurricanes. 4.4. Oceanic Deep Convection. 4.4.1. Observations of Oceanic Deep Convection -- Ch. 5. The Ocean's Warm WaterSphere. 5.1. Oceanic Heat Gain and Loss. 5.1.1. Mechanisms of Heat Gain. 5.2. Oceanic Heat Transports. 5.2.1. Direct Estimates of Heat Transports. 5.2.2. Syntheses of Meteorological Data. 5.3. Warm to Cold Water Conversion in the North Atlantic. 5.3.1. Cold to Warm Water Conversion. 5.4. The Ocean's Overturning Circulation. 5.4.1. The Role of the Tropical Atlantic. 5.4.2. Heat Export from the Equatorial Atlantic. 5.5. What Drives the Overturning Circulation? 5.5.1. CAPE Produced by Deep Convection. 5.5.2. Density Flux and Pycnostads in the North Atlantic. "Air-Sea Interaction, Laws and Mechanisms provides a comprehensive account of how the atmosphere and the ocean interact to control the global climate, what physical laws govern this interaction, and what are its prominent mechanisms. A novel feature of the book is the treatment of empirical laws of momentum, heat, and mass transfer, across the air-sea interface as well as across thermoclines, as laws of nonequilibrium thermodynamics, with focus on entropy production. Thermodynamics also underlies the treatment of the overturning circulations of the atmosphere and the ocean. Highlights are thermodynamic cycles, the important function of "hot towers" in drying out of moist air, and oceanic heat transport from the tropics to polar regions. By developing its subject from basic physical (thermodynamic) principles, the book is broadly accessible to a wide audience." "The book is mainly directed toward graduate students and research scientists in meteorology, oceanography, and environmental engineering. The book also will be of value on entry level courses in meteorology and oceanography, and to the broader physics community interested in the treatment of transfer laws, and thermodynamics of the atmosphere and ocean."--Jacket.