Record Display for the EPA National Library Catalog


OLS Field Name OLS Field Data
Main Title Soft fullerene materials : click chemistry and supramolecular assemblies /
Author Zhang, Wen-Bin,
Other Authors
Author Title of a Work
Cheng, Stephen Z. D.,
Publisher University of Akron,
Year Published 2010
OCLC Number 1001302991
Subjects Fullerenes. ; Polymers. ; Self-assembly (Chemistry) ; Supramolecular chemistry.
Library Call Number Additional Info Location Last
ELBM  QD181.C1Z53 2010 AWBERC Library/Cincinnati,OH 08/22/2017
Collation xvi, 182 pages : illustrations (chiefly color) ; 24 cm
Includes bibliographical references (pages 169-180).
Contents Notes
Fullerenes are fascinating carbon nanostructures with outstanding structural and functional properties, which critically rely on their spatial arrangements. However, their strong aggregation makes them difficult to pack into ordered structures in different dimensions and across multiple length scales. The purpose of this research is to develop "soft fullerene materials," in particular, using self-assemblies of polymers as templates to manipulate their order and symmetry. Synthesis of fullerene polymers with high purity and well-defined structure has been difficult due to the reactive nature of fullerene towards various reaction intermediates and the often unavoidable multiple additions. To address this, a "click chemistry" approach has been developed, as demonstrated by the model reaction between azide-functionalized polystyrene (PS-Nb3s) and highly reactive alkyne-functionalized fullerene (Fulleryne01). Fullerynes with different structures and reactivities have been designed and synthesized. Combined with living/controlled polymerization techniques, the method has been successfully extended to fullerene polymers based on poly(ethylene oxide) (PEO) and poly(ethylene oxide)-block-polystyrene (PEO-b-PS) with controlled molecular weight and narrow polydispersity. The Cb60s was placed at the chain-end [PEO-Cb60s and PEO-b-PS-Cb60s], or at the junction point between two blocks [PEO-(Cb60s)-PS], or randomly tethered along one block [PEO-b-PS/Cb60s]. The self-assembly of these polymers, such as crystallization from dilute solution, micellization in selective solvents, and phase separation in the bulk or thin films, have been studied. Preliminary results have shown that they could template the spatial arrangements of Cb60s. For example, the single crystals of PEO-Cb60s have been grown to generate PEO single crystal lamellae with Cb60s tethered to the surface, forming a 2D Cb60s molecular sheet. The alternating, epitaxial growth of PEO and PEO-Cb60s single crystals might lead to near-1D ring patterns of Cb60s. The diblock copolymers, PEO-(Cb60s)-PS and PEO-b-PS-Cb60s, were found to form micelles in DMS/water mixed solvent, in which Cb60s was either confined to the interface between the core and corona, or inside the core. The bulk self-assembly of PEO-(Cb60s)-PS has shown an unusual decrease in d-spacing, as compared to its parent polymer PEO-(N3)-PS; whereas both PEO-b-PS-Cb60s and PEO-b-PS/Cb60s showed increase in d-spacing. This drastic difference was due to the location of Cb60s in the final structure. This study has demonstrated the concept and the promising future of "soft fullerene materials." In addition, during the development of these materials, a "retro-functional analysis" approach has been proposed as the molecular design principle for advanced materials. It enables efficient and modular development of functional molecular materials with engineered hierarchical structure across different length scales to exhibit a specific macroscopic property. Being function-oriented rather than synthesis-oriented, it fuels innovation in molecular design and provides future targets for material research.