Record Display for the EPA National Library Catalog

RECORD NUMBER: 5 OF 5

OLS Field Name OLS Field Data
Main Title Temporal Signatures of Air Quality Observations and Model Outputs: Do Time Series Decomposition Methods Capture Relevant Time Scales.
Author Porter, P.S. ; Swall, J. ; Gilliam, R. ; Gego, E. L. ; Hogrefe, C. ;
CORP Author Environmental Protection Agency, Research Triangle Park, NC. National Exposure Research Lab. ;National Oceanic and Atmospheric Administration, Research Triangle Park, NC. Atmospheric Sciences Modeling Div. ;State Univ. of New York at Albany.
Publisher 2004
Year Published 2004
Report Number EPA/600/A-04/110 ;NERL-RTP-AMD-04-086;
Stock Number PB2005-101228
Additional Subjects Air quality ; Meteorology ; Time series analysis ; Decomposition ; Performance ; Numerical analysis ; Time scales
Holdings
Library Call Number Additional Info Location Last
Modified
Checkout
Status
NTIS  PB2005-101228 Most EPA libraries have a fiche copy filed under the call number shown. Check with individual libraries about paper copy. NTIS 05/03/2005
Collation 10p
Abstract
Time series decomposition methods were applied to meteorological and air quality data and their numerical model estimates. Decomposition techniques express a time series as the sum of a small number of independent modes which hypothetically represent identifiable forcings, thereby helping to untangle complex processes. Mode-to-mode comparison of observed and modeled data provides a mechanism for model evaluation. The decomposition methods included empirical orthogonal functions (EOF), empirical mode decomposition (EMD), and wavelet filters (WF). EOF, a linear method designed for stationary time series, is principal component analysis (PCA) applied to time-lagged copies of a given time series. EMD is a relatively new nonlinear method that operates locally in time and is suitable for nonstationary and nonlinear processes; it is not, in theory, bandwidth limited, and the number of modes is automatically determined. Wavelet filters are linear and band-width guided with the number of modes set by the analyst. The purpose of this paper is to compare the performance of decomposition techniques in characterizing time scales in meteorological and air quality variables. Aiding this comparison is an analysis of simulated time series that have features in common with observations.