Record Display for the EPA National Library Catalog

RECORD NUMBER: 3 OF 5

Main Title Real-time monitoring for toxicity caused by harmful algal blooms and other water quality perturbations.
CORP Author Environmental Protection Agency, Washington, DC. National Center for Environmental Assessment.
Publisher National Center for Environmental Assessment--Washington Office, Office of Research and Development, U.S. Environmental Protection Agency,
Year Published 2001
Report Number EPA/600/R-01/103; NCEA-W-1089; PB2002104607
Stock Number PB2002-104607
OCLC Number 49406852
Subjects Water quality biological assessment ; Water--Pollution--Toxicology--Measurement ; Indicators (Biology)
Additional Subjects Algal blooms ; Toxicity ; Water quality management ; Environmental monitoring ; Water pollution sampling ; Pliesteria ; Laboratory tests ; Fish diseases ; Species diversity ; Coastal waters ; Fish kills ; United States ; Regulations ; Recommendations ; Fish ventilatory biomonitoring system
Internet Access
Description Access URL
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=30002GCS.PDF
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=2000TZVA.PDF
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1006ARP.PDF
http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=29117#Download
Holdings
Library Call Number Additional Info Location Last
Modified
Checkout
Status
EHAD  EPA/600/R-01-103 Region 1 Library/Boston,MA 04/19/2002
EHBD  EPA/600/R-01/103 CEMM/ACESD Library/Narragansett,RI 02/23/2007
EJED  EPA/600/R-01/103 OCSPP Chemical Library/Washington,DC 12/19/2003
EKBD  EPA/600/R-01/103 Research Triangle Park Library/RTP, NC 07/19/2002
EKCD  EPA/600/R-01/103 CEMM/GEMMD Library/Gulf Breeze,FL 11/20/2018
ELBD ARCHIVE EPA 600-R-01-103 Received from HQ AWBERC Library/Cincinnati,OH 10/04/2023
ELBD  EPA 600-R-01-103 AWBERC Library/Cincinnati,OH 04/12/2002
EMBD  EPA/600/R-01/103 NRMRL/GWERD Library/Ada,OK 03/29/2002
ERAD  EPA 600/R-01/103 Region 9 Library/San Francisco,CA 04/29/2016
ESAD  EPA 600-R-01-103 2 copies Region 10 Library/Seattle,WA 06/02/2016
NTIS  PB2002-104607 Some EPA libraries have a fiche copy filed under the call number shown. 07/26/2022
Collation 1 volume (various pagings) : illustrations ; 28 cm
Abstract
This project, sponsored by EPA's Environmental Monitoring for Public Access and Community Tracking (EMPACT) program, evaluated the ability ofan automated biological monitoring system that measures fish ventilatoryresponses (ventiliatory rate, ventilatory depth, and cough rate) to detect developing toxic conditions in water. In laboratory tests, acutely toxic levels of both brevetoxin (PbTx-2) and toxic Pfiesteria piscicida cultures caused fish responses primarily through large increases in cough rate. In the field, the automated biomonitoring system operated continuously for 3 mo on the Chicamacomico River, a tributary to the Chesapeake Bay that has had a history of intermittent toxic algal blooms. Data gathered through this effort complemented chemical monitoring data collected by the Maryland Department of NaturalResources (DNR) as part of their Pfiesteria monitoring program. After evaluation of DNR personnel, the public could access the data at a DNR Internet web site. (www.dnr.statem.us/bay/ pfiesteria/00results.html) or receive more detailed information at aquaticpath.umd.ed/empact. The field biomonitor identified five fish response events. Increased conductivity combined with a substantial decrease in water temperature was the likely cause of one event, while contaminants (probably surfactants) released from inadequately rinsed particle filters producedanother response. The other three events, characterized by greatly increased cough rate (two events) or increased ventilation rate and depth (one event), did not have identified causes. Water quality variations did not correspond to the timing of the three events, analyses of water taken by an automated sampler were negative for the presence of Pfiesteria or chemicals that could be associated with the observed responses, and no fish kills occurred on the chicamacomico River during the monitoring period. Continuing activities to improve thebiomonitoring system include providing a change detection algorithm for fish ventilatory patterns that does not depend on a baseline monitoring period, integrating the fish biomonitor with other automated biomonitoring systems, and developing an expert system to better detect toxic events and distinguish them from fish responses to normal variations in ambient water quality conditions.
Notes
"November 2001." Includes bibliographical references (pages R-1-R-6). "EPA/600/R-01/103."