Record Display for the EPA National Library Catalog

RECORD NUMBER: 14 OF 38

Main Title Environmental and ecological statistics with R /
Author Qian, Song S.
Publisher Chapman & Hall/CRC,
Year Published 2010
OCLC Number 425960032
ISBN 9781420062069; 1420062069
Subjects Environmental sciences--Statistical methods ; Ecology--Statistical methods ; R (Computer program language) ; Sciences de l'environnement--Méthodes statistiques ; âEcologie--Méthodes statistiques ; R (logiciel)
Holdings
Library Call Number Additional Info Location Last
Modified
Checkout
Status
EKBM  GE45.S73Q25 2010 Research Triangle Park Library/RTP, NC 01/30/2017
EMAM  GE45.S73.Q536 2010 Region 6 Library/Dallas,TX 08/16/2011
Collation xix, 421 pages : illustrations ; 24 cm.
Notes
Includes bibliographical references (pages 409-416) and index.
Contents Notes
pt. 1. Basic concepts. Introduction. The Everglades example ; Statistical issues -- R. What is R? ; Getting started with R ; The R commander -- Statistical assumptions. The normality assumption ; The independence assumption ; The constant variance assumption ; Exploratory data analysis ; From graphs to statistical thinking -- Statistical inference. Estimation of population mean and confidence interval ; Hypothesis testing ; A general procedure ; Nonparametric methods for hypothesis testing ; Significance level [alpha], power 1 -- [beta], and p-value ; One-way analysis of variance ; Examples -- pt. 2. Statistical modeling. Linear models. ANOVA as a linear model ; Simple and multiple linear regression models ; General considerations in building a predictive model ; Uncertainty in model predictions ; Two-way ANOVA -- Nonlinear models. Nonlinear regression ; Smoothing ; Smoothing and additive models -- Classification and regression tree. The Willamette River example ; Statistical methods ; Comments -- Generalized linear model. Logistic regression ; Model interpretation ; Diagnostics ; Seed predation by rodents : a second example of logistic regression ; Poisson regression model ; Generalized additive models -- pt. 3. Advanced statistical modeling. Simulation for model checking and statistical inference. Simulation ; Summarizing linear and nonlinear regression using simulation ; Simulation based on re-sampling -- Multilevel regression. Multilevel structure and exchangeability ; Multilevel ANOVA ; Multilevel linear regression ; Generalized multilevel models.