Abstract |
Between 1946 and 1970 the United States disposed of low level radioactive waste at several sites in the Atlantic and Pacific Ocean. In 1972 the Environmental Protection Agency was authorized under the Marine Protection Research and Sanctuaries Act (PL-92-532) to regulate all ocean disposal activities. This Act requires EPA to establish a program for reviewing and evaluating ocean dumping permit applications. Before EPA can approve permits for ocean dumping of radioactive waste, it will be necessary to determine how such wastes may affect marine biota. The purpose of this study was to test the feasibility of using a marine coastal worm, Neanthes arenaceodentata, as a cytogenetic model for assessing radiation damage to ocean organisms. Groups of worms were exposed to cobalt-60, then slide preparations were made and scored for gross chromosome aberrations and damage. All the levels of ionizing radiation tested from 180-680 rads were found to cause significant chromosome damage in N. arenaceodentata. The nature of this damage depended on dose, dose-rate and DNA repair capability of the worm. Worms responded to the same dose range as do mice. Since mice are accepted models for studying radiation effects on humans, this study supports the utility of using this species to study radiation effects on marine organisms. |