Record Display for the EPA National Library Catalog

RECORD NUMBER: 1 OF 1

Main Title Disposition of Mulberry Pollen in the Human Respiratory System: A Mathematical Model.
Author Martonen, T. B. ; O'Rourke, M. K. ;
CORP Author Arizona Univ., Tucson. Div. of Respiratory Sciences.;Health Effects Research Lab., Research Triangle Park, NC.;Center for Indoor Air Research, Linthicum, MD.
Publisher 1993
Year Published 1993
Report Number EPA-R811806 ;EPA-90-003; EPA/600/J-94/065;
Stock Number PB94-143765
Additional Subjects Pollen ; Respiratory system ; Environmental air pollutants ; Air pollution effects(Humans) ; Allergens ; Pharmacokinetics ; Respiration ; Particles ; Biological models ; Reprints ; Mulberry pollen
Holdings
Library Call Number Additional Info Location Last
Modified
Checkout
Status
NTIS  PB94-143765 Some EPA libraries have a fiche copy filed under the call number shown. 07/26/2022
Collation 14p
Abstract
Inhaled particle deposition sites must be identified to effectively treat human airway diseases. We have determined distribution patterns of a selected aeroallergen, mulberry pollen, among human extrathoracic (ET: i.e., oronasopharyngeal) regions and the lung. A predictive model validated by inhalation exposure data from human subjects was utilized. Deposition locations were primarily functions of (1) mulberry particle parameters (geometric size, 11-18 micrometers, shape, spherical; and density, 1.14 g/cu cm, and (2) mode of breathing. In the general population, two styles of inhalation are prevalent, normal augmentors (NAs) and mouth breathers (MBs). Their clinical definitions are based on intra-ET airflow divisions. For a NA-mode breathing sedentary (minute ventilation = V(sub E) = 10 L/min) adult, 93% of inhaled mulberry pollen was removed by the ET compartment and 7% collected within the lung. For a MB, the respective deposition efficiencies were 75% and 25%. To apply the model, we used a daily springtime mulberry pollen concentration of 1,748 grains/cu m and an exposure time of 0.5 hour to calculate actual doses for the respiratory system. Under the stipulated conditions, a MB would inhale 524 pollen grains per day and 131 would be deposited in the lung; the value is 37 grains for a NA. Preliminary epidemiological results suggest 15% of the study population are MBs in whom such pollen deposits are likely contributors to airway disease.