Abstract |
2,4-Dithiobiuret (DTB) exposure causes a delayed onset muscle weakness in rats that has been attributed to depressed neuromuscular transmission. The present study compares the effects of DTB on both sensory and motor function in rats. Adult male Long-Evans hooded rats were exposed to saline, 0.25, 0.5, or 1.0 mg/kg/day DTB, ip, for 5 consecutive days (Days 1-5). Body weights were monitored throughout the experiment. Motor activity was measured for 1 hr in figure-eight mazes on Days 0, 6, 13, and 27. Forelimb and hindlimb grip strength were assessed on Days 6, 13, and 27. Auditory thresholds were determined for 5- and 40-kHz tones using reflex modification of the startle response on Days 0, 7, 14, and 28. Visual function was examined on Day 6 in animals exposed at 0.5 mg/kg/day using flash- and pattern-elicited visual evoked potentials (FEPs and PEPs, respectively). Thermal sensitivity was measured using the hot plate procedure. All motor endpoints were decreased in a dosage- and time-dependent manner; the higher the dosage the longer the effects lasted. There were no effects on any measure of sensory function with the exception of peak N2 of the FEP. Both the amplitude and latency of FEP N2 were altered by DTB exposure. Decreases in body weight were maximal on Day 9 at 1.0 mg/kg/day (20% from control), but recovered by Day 22. (Copyright (c) 1991 by the Society of Toxicology.) |