Record Display for the EPA National Library Catalog

RECORD NUMBER: 8 OF 8

OLS Field Name OLS Field Data
Main Title The finite element method : fundamentals and applications /
Author Norrie, D. H.
Other Authors
Author Title of a Work
De Vries, Gerard
Publisher Academic Press,
Year Published 1973
OCLC Number 00590708
ISBN 0125216505; 9780125216500
Subjects Finite element method. ; Eindige-elementenmethode. ; Mathematische fysica. ; Anwendung.--(DE-588)4196864-5 ; Finite-Elemente-Methode.--(DE-588)4017233-8 ; Matematica Da Computacao. ; Elementos Finitos (Estruturas) ; Analise Funcional.
Additional Subjects Finite element method
Internet Access
Description Access URL
Table of contents http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2368249&custom_att_2=simple_viewer
http://site.ebrary.com/lib/siastlibraries/Doc?id=11003788
Holdings
Library Call Number Additional Info Location Last
Modified
Checkout
Status
EJDM  TA335.N67 Env Science Center Library/Ft Meade,MD 05/13/1994
EKBM  TA335.N67 1973 Research Triangle Park Library/RTP, NC 08/31/2011
Collation xiii, 322 pages : illustrations ; 24 cm
Notes
Includes bibliographical references (pages 297-308) and index.
Contents Notes
The formulation of physical problems -- Field problems and their approximate solutions -- The variational calculus and its application -- The variational method based on the Hilbert space -- Fundamentals of the finite element approach -- The Ritz finite element method (classical) -- The Ritz finite element method (Hilbert space) -- Finite element applications in solid and structural mechanics -- The Laplace or potential field -- Laplace and associated boundary-value problems -- The Helmholtz and wave equations -- The diffusion equation -- Finite element applications to viscous flow -- Finite element applications to compressible flow -- Finite element applications to more general fluid flows -- Other finite element applications -- Appendix A : Matrix algebra -- Appendix B : The differential and integral calculus of matrices -- Appendix C : The transformation matrix.