Record Display for the EPA National Library Catalog
RECORD NUMBER: 17 OF 34
OLS Field Name | OLS Field Data | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Main Title | Introduction to data science : data analysis and prediction algorithms with R / | |||||||||||
Author | Irizarry, Rafael A., | |||||||||||
Publisher | CRC Press, | |||||||||||
Year Published | 2020 | |||||||||||
OCLC Number | 1104856206 | |||||||||||
ISBN | 9780367357986; 0367357984; 9780367357993; 0367357992 | |||||||||||
Subjects | R (Computer program language) ; R (Computer program language)--Problems, exercises, etc. ; Data mining--Problems, exercises, etc. ; Information visualization. ; Statistics--Data processing. ; Probabilities--Data processing. ; Computer algorithms. ; Quantitative research. ; Computer algorithms--Problems, exercises, etc. ; Datenanalyse ; R--Programm ; Statistik ; Visualisierung | |||||||||||
Holdings |
|
|||||||||||
Collation | xxx, 713 pages : color illustrations, charts (some color) ; 26 cm. | |||||||||||
Notes | Includes bibliographical references and index. |
|||||||||||
Contents Notes | "The book begins by going over the basics of R and the tidyverse. You learn R throughout the book, but in the first part we go over the building blocks needed to keep learning during the rest of the book"-- Getting started with R and RStudio -- R Basics -- Programming basics -- The tidyverse -- Importing data -- Data visualization -- Introduction to data visualization -- ggplot2 -- Visualizing data distributions -- Data visualization in practice -- Data visualization principles -- Robust summaries -- Introduction to statistics with R -- Probability -- Random variables -- Statistical inference -- Statistical models -- Regression -- Linear models -- Association is not causation -- Introduction to data wrangling -- Reshaping data -- Joining tables -- Web scraping -- String processing -- Parsing dates and times -- Text mining -- Introduction to machine learning -- Smoothing -- Cross validation -- The caret package -- Examples of algorithms -- Machine learning in practice -- Large datasets -- Clustering -- Introduction to productivty tools -- Organizing with Unix -- Git and GitHub -- Reproducible projects with RStudio and R markdown. |