Abstract |
Although the pervasive soil and water microorganism Pseudomonas aeruginosa demonstrates heightened sensitivity to UV radiation, the species possesses a recA gene that, based on structural and functional properties, could mediate a DNA damage-responsive regulon similar to the SOS regulon of Escherichia coli. To determine whether P. aeruginosa encodes such stress-inducible genes, the response of P. aeruginosa to DNA-damaging agents including far-UV radiation (UVC) and the quinolone antimicrobial agent norfloxacin was investigated by monitoring the expression of fusions linking P. aeruginosa promoters to a beta-galactosidase reporter gene. These fusions were obtained by Tn3-HoHoI insertional mutagenesis of a P. aeruginosa genomic library. Eight different damage-inducible (din) gene fusions were isolated which lack homology to the P. aeruginosa recA gene. Expression of the three gene fusions studied, dinA::lacZYA, dinB::lacZYA, and dinC::lacZYA, increased following UVC and quinolone exposure but not following heat shock. Similar to E. coli SOS genes, the din genes were induced to different extents and with dissimilar kinetics following UVC irradiation. (Copyright (c) 1992, American Society for Microbiology.) |