Record Display for the EPA National Library Catalog

RECORD NUMBER: 1 OF 1

OLS Field Name OLS Field Data
Main Title Introduction to data science : data analysis and prediction algorithms with R /
Author Irizarry, Rafael A.,
Publisher CRC Press,
Year Published 2020
OCLC Number 1104856206
ISBN 9780367357986; 0367357984; 9780367357993; 0367357992
Subjects R (Computer program language) ; R (Computer program language)--Problems, exercises, etc. ; Data mining--Problems, exercises, etc. ; Information visualization. ; Statistics--Data processing. ; Probabilities--Data processing. ; Computer algorithms. ; Quantitative research. ; Computer algorithms--Problems, exercises, etc. ; Datenanalyse ; R--Programm ; Statistik ; Visualisierung
Holdings
Library Call Number Additional Info Location Last
Modified
Checkout
Status
EKBM  QA276.45.R3I75 2020 Research Triangle Park Library/RTP, NC 11/08/2021
Collation xxx, 713 pages : color illustrations, charts (some color) ; 26 cm.
Notes
Includes bibliographical references and index.
Contents Notes
"The book begins by going over the basics of R and the tidyverse. You learn R throughout the book, but in the first part we go over the building blocks needed to keep learning during the rest of the book"-- Getting started with R and RStudio -- R Basics -- Programming basics -- The tidyverse -- Importing data -- Data visualization -- Introduction to data visualization -- ggplot2 -- Visualizing data distributions -- Data visualization in practice -- Data visualization principles -- Robust summaries -- Introduction to statistics with R -- Probability -- Random variables -- Statistical inference -- Statistical models -- Regression -- Linear models -- Association is not causation -- Introduction to data wrangling -- Reshaping data -- Joining tables -- Web scraping -- String processing -- Parsing dates and times -- Text mining -- Introduction to machine learning -- Smoothing -- Cross validation -- The caret package -- Examples of algorithms -- Machine learning in practice -- Large datasets -- Clustering -- Introduction to productivty tools -- Organizing with Unix -- Git and GitHub -- Reproducible projects with RStudio and R markdown.