Record Display for the EPA National Library Catalog

RECORD NUMBER: 2 OF 11

OLS Field Name OLS Field Data
Main Title Estimating the Changing Rate of Anaerobic Reductive Dechlorination of Chlorinated Aliphatic Hydrocarbons in the Presence of Petroleum Hydrocarbons.
Author Moutoux, D. E. ; Benson, L. A. ; Swanson, M. A. ; Wiedemeier, T. H. ; Lenhart, J. ;
CORP Author National Risk Management Research Lab., Ada, OK. Subsurface Protection and Remediation Div. ;Parsons Engineering Science, Inc., Denver, CO. ;Colorado School of Mines, Golden. Div. of Environmental Science and Engineering. ;Air Force Center for Environmental Excellence, Brooks AFB, TX.
Publisher 1996
Year Published 1996
Report Number EPA/600/A-96/123;
Stock Number PB97-117998
Additional Subjects Chlorinated aliphatic hydrocarbons ; Petroleum products ; Biodegradation ; Attenuation ; Ground water ; Aquifers ; Microorganisms ; Oxidation reduction reactions ; Electron acceptors ; Electron donors ; Dechlorination ; Anaerobic processes ; Biochemical reaction kinetics ; Water pollution control ; Cometabolic processes ; BTEX(Benzene Toluene Ethylbenzene Xylene)
Internet Access
Description Access URL
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100VFF9.PDF
Holdings
Library Call Number Additional Info Location Last
Modified
Checkout
Status
NTIS  PB97-117998 Most EPA libraries have a fiche copy filed under the call number shown. Check with individual libraries about paper copy. 02/22/1997
Collation 18p
Abstract
Recent laboratory and field results demonstrate that different chlorinated aliphatic hydrocarbons (CAHs) ultimately can be transformed into innocuous chemical compounds in many aquifer systems. Transportation can be the result of either cometabolic reactions or reduction oxidation (redox) reactions. Several methodologies may be used to estimate the rate of reductive dechlorination of CAH compounds when they are being used to oxidize BTEX compounds. Both first-order and second-order approximations of CAH degradation rates can be useful in predicting CAH/BTEX plume behavior, although the second-order approximation will be especially useful in determining whether the system will first exhaust the available supply of electron donors (i.e., starve) or electron acceptors (i.e., strangle).