Intracity Variability of Particulate Matter Exposure Is Driven by Carbonaceous Sources and Correlated with Land-Use Variables

Peishi Gu,† Hugh Z. Li,† Qing Ye,† Ellis S. Robinson,‡ Joshua S. Apte,‡ Allen L. Robinson,‡ and Albert A. Presto†

†Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
‡Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, Texas 78712, United States

ABSTRACT: Localized primary emissions of carbonaceous aerosol are the major drivers of intracity variability of submicron particulate matter (PM$_1$) concentrations. We investigated spatial variations in PM$_1$ composition with mobile sampling in Pittsburgh, Pennsylvania, United States and performed source-apportionment analysis to attribute primary organic aerosol (OA) to traffic (HOA) and cooking OA (COA). In high-source-impact locations, the PM$_1$ concentration is, on average, 2 μg m$^{-3}$ (40%) higher than urban background locations. Traffic emissions are the largest source contributing to population-weighted exposures to primary PM. Vehicle-miles traveled (VMT) can be used to reliably predict the concentration of HOA and localized black carbon (BC) in air pollutant spatial models. Restaurant count is a useful but imperfect predictor for COA concentration, likely due to highly variable emissions from individual restaurants. Near-road cooking emissions can be falsely attributed to traffic sources in the absence of PM source apportionment. In Pittsburgh, 28% and 9% of the total population are exposed to >1 μg m$^{-3}$ of traffic- and cooking-related primary emissions, with some populations impacted by both sources. The source mix in many U.S. cities is similar; thus, we expect similar PM spatial patterns and increased exposure in high-source areas in other cities.

1. INTRODUCTION

Ambient fine particulate matter (PM$_{2.5}$) is a complex mixture of components that differ significantly in chemical identities and sources. Long-term exposure to PM is associated with various adverse health effects and increased mortality. PM concentrations vary both between and within cities. Epidemiology and air quality studies have historically focused on intercity variability, but the magnitude of intracity variability is comparable or sometimes greater. There is evidence of association between intracity PM spatial gradients and adverse health effects within urban areas. Such intracity variations are often caused by localized primary sources of PM emissions. Studies have also shown evidence that emissions from different sources vary in their negative health effects. Thus, it is important to capture the spatial variability of both the concentration and source contributions of PM in urban environments.

In the United States and Europe, the major local emission sources of PM include traffic, cooking, and biomass burning. The relationship between traffic and PM spatial variability has been studied extensively. Near-road exposures are correlated with respiratory diseases, vascular disease, and negative birth outcomes. Significantly less is known about spatial variations caused by distributed non-traffic sources, such as cooking and biomass burning.

Source contributions to PM can be inferred from geospatial analysis (e.g., the gradient of PM concentration moving away from a roadway) and source-specific chemical fingerprints. For example, urban black carbon (BC) is dominated by diesel vehicle emissions, hopanes are markers of vehicular emissions, and levoglucosan is associated with biomass burning. More recently, source apportionment analysis of aerosol mass spectrometer (AMS) data using positive matrix factorization (PMF) has identified primary and secondary PM components with consistent and comparable source profiles around the world.

Mobile sampling with high-time-resolution instruments is capable of capturing sharp spatial gradients and the deployment of sophisticated, chemically specific instruments such as AMS enables PM source apportionment with high spatial resolution. This, in turn, enables spatially and source-resolved characterization of PM, which can vastly improve our understanding of human exposures. In this study, we conducted in-motion mobile sampling with an AMS in Allegheny County and Pittsburgh, Pennsylvania, United States (Figure 1). We investigated the PM composition and source impact at 200 m spatial resolution and explored how this spatial variability is correlated with the geographic covariates that represent local sources and impacts

Received: July 15, 2018
Revised: August 21, 2018
Accepted: September 24, 2018
Published: September 24, 2018

DOI: 10.1021/acs.est.8b03833
Publ. Date: 2018, September 24

© 2018 American Chemical Society

Environmental Science & Technology

Downloaded via US EPA OFFICE OF ENVIRONMENTAL INFO on November 5, 2019 at 14:56:34 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
population exposures in different locations. While these data were collected for one city, we expect similar spatial patterns to exist in other cities because the urban source mix is often dominated by traffic and cooking.

2. MATERIALS AND METHODS

The goal of this study is to quantify the spatial variability of PM concentration, composition, and source impact. To achieve this goal, we collected spatially- and chemically resolved PM data to set the contribution from various sources. Spatial patterns of total and source-resolved PM and the correlation between concentration and spatial covariates enable us to identify hotspots associated with specific sources. Further details on the methods are described in the Supporting Information.

2.1. Mobile Sampling Platform. Measurements took place in Allegheny County and the city of Pittsburgh, Pennsylvania (Figure 1) as part of the Center for Air, Climate, and Energy Solutions (CACES). We utilized a mobile laboratory23 with an Aerodyne high-resolution aerosol mass spectrometer (AMS)23,26 and a Magee Scientific aethalometer (AE-33) onboard. The inlet of the mobile sampling platform is located about 4 m above ground at the front of the van. We saw no indication of self-sampling during our tests and sampling periods.23,25 We performed in-motion sampling on 32 different days in the summer, fall, and winter from August 2016 to February 2017 (Table S1). The AMS and aethalometer measurements were made at 20 s resolution, which is equivalent to one sample from every 224 m at 40 km/h (25 mph). A total of 16 communities of roughly 1 km² area were selected to characterize urban, suburban, and rural areas with different land-use and source distributions (Table S2). Samples collected on frequently traveled roads between the designated communities were included as well.

Each time we visited a community, we drove through all public roads at least once. Sampling typically took 45–60 min per community, and we typically sampled 3–5 communities on each sampling day. For each community, measurements were taken during morning (5–10 a.m.), midday (11 a.m.–4 p.m.), and evening (5–10 p.m.) periods on different days so that concentration data are not biased due to the time-of-day patterns of local emissions. Measurements were only conducted on weekdays to avoid any bias from weekday-weekend emission patterns.

2.2. Classification of Land Use by Traffic and Restaurant Density. Spatial gradients of PM concentrations exist within a 1 km² community. Thus, it is necessary to look at the spatial variation at a finer scale relevant to local sources. A 200 m × 200 m grid cell system is used to process spatially resolved data in this study (the mobile sampling platform collects roughly one sample in every grid cell it passes at 40 km/h). All spatial analysis and mapping were performed in Esri ArcGIS Pro (v1.4.1). A total of 1366 cells were visited. The sample size within each 200 m grid cell is listed in Figure S1.

We use land-use covariates to classify all the grid cells into four categories (Figure 1c and Table S5) and to quantify the correlation between measurements and local sources. “Low source” cells (250 out of 1366 cells in the sampling domain) have low traffic and no restaurants. Low-source cells are mostly in residential areas and parks. “Restaurant” cells (24 out of 1366), which have at least one restaurant and low traffic, are very rare. “Traffic” cells (817 out of 1366), which have high traffic but zero restaurants, are the most common cells largely due to the on-road sample collection. “High-source” cells (275 out of 1366), which have both high traffic and restaurants, are located in business areas such as downtown Pittsburgh. Due to the small number of low-traffic restaurant cells, we exclude them from most of the analyses in the manuscript. Details of this classification are described in section S1 of the Supporting Information.

2.3. Organic PM Source Apportionment and BC Background Correction. Data collected by AMS were processed by Squirrel (version 1.57I) and Pika (version 1.16I) in Igor (version 6.37)23,26 to determine the concentration of total nonrefractive submicron PM (PM₁) as well as concentrations of various chemical families such as organics, sulfate, nitrate, ammonium, and chloride. We consider the sum of AMS non-refractory PM₁ and aethalometer-measured black carbon (BC) as the total PM₁ concentration.
Positive matrix factorization (PMF) analysis was performed on the organic aerosol mass spectra using the AMS PMF tool (1.4.1),7,27 and yielded a five-factor solution (details are given in Figure S3 and section S.2 of the Supporting Information). A total of three primary organic aerosol (POA) factors and two oxidized organic aerosol (OOA) factors were resolved. The three POA factors represent fresh OA emissions from traffic (hydrocarbon-like OA, or “HOA”), cooking (COA), and biomass burning (BBOA). The two OOA factors (more-oxidized organic aerosol, “MOOA”, and less-oxidized organic aerosol, “LOOOA”) differ in their molar O-to-C ratio (0.80 versus 0.52).

Following previous AMS studies, we used the default collection efficiency (CE: 0.5) for all species and relative ionization efficiency (RIE: 1.4) for organics. Recently published studies have suggested that the default RIE and CE may lead to the over-estimation of COA concentration, although there seems to be significant variability in RIE for COA.28,29 We use the default parameters in this manuscript so that our results remain comparable to other previous field studies.

The BC concentration was determined from the 880 nm channel in the aethalometer. The BC concentration time series features spikes (Figure S4) associated with local emissions and neighborhood-level enhancements associated with traffic emissions,24 but a substantial fraction of the BC concentration is not spatially variable. We performed background correction to separate the local, spatially variable BC concentration from the spatially invariant background.

The background correction for BC concentration is demonstrated in Figure S4. First, we smoothed the BC time-series with a second-degree polynomial model to remove spikes (Matlab function “smooth” with “span” of 30 min). These spikes are typically associated with emissions from vehicles or nearby stationary sources.24 We then fit the baseline of the smoothed curve with a spline function of the moving 10% quantile (Matlab function “msbackadj” with “WindowSize” of 2 h). We consider the mass concentration below the fitted baseline as the “background” concentration and the difference between the measured and background concentration as the “local BC” concentration. As shown in Figure S4, the background concentration slowly varies over the course of each sampling day due to changes in the boundary layer height. The local BC contribution captures the individual plumes noted above as well as neighborhood-level enhancements that arise from higher vehicle densities in some areas.

3. RESULTS AND DISCUSSION

3.1. Seasonal Variation of PM$_1$ Concentration, Composition, and Source Contribution. The concentration and composition of PM$_1$ varies greatly by season (section S.4 in the Supporting Information and Figure S5). In general, PM$_1$ concentration is significantly higher [analysis of variance (ANOVA) test with a p value of <0.001] in the summer ($11.4 \pm 5.5 \, \mu g \, m^{-3}$, average plus or minus the standard deviation) than in the winter ($9.1 \pm 7.8 \, \mu g \, m^{-3}$) due to the increased concentrations of secondary oxygenated organic aerosols (less- and more-oxidized organic aerosols, LOOOA and MOOOA) and sulfate. These are the result of enhanced photochemical oxidation in the hotter season.30,31 Concentrations of primary components [traffic-related OA (HOA), cooking-related OA (COA), and local BC] show much less seasonal variability. Biomass burning-related OA (BBOA) concentration is notably higher in winter, likely a result of more wood burning for home heating in colder
months. Primary PM$_1$ accounts for about half of the total concentration in winter versus a quarter in the summer.

After a comparison of the result of our 2016–2017 campaign with the 2002 Pittsburgh Air Quality Study (PAQS), it was determined that the summer PM$_1$ concentration in Pittsburgh had been reduced by 5.3 μg m$^{-3}$ (Figure S5b). The reduction is primarily driven by inorganic components, which fell from 9.8 to 2.8 μg m$^{-3}$. Organic aerosol concentrations increased from 4.4 to 6.2 μg m$^{-3}$.

3.2. Spatial Patterns of PM$_1$ Components

The spatial variation in primary carbonaceous PM drives the overall PM$_1$ spatial variability. The measured concentration of local BC, HOA, and COA are spatially joined to 200 m grid cells in the sampling domain and are illustrated in the maps in Figure 2. The spatial variability of these factors, as well as the sum of these three, is clearly evident. In section S.5 of the Supporting Information and Figure S5c, we show that the spatial variability of local BC, HOA, and COA far outweighs that of secondary components (inorganics and OOA) and BBOA. This variability is driven by emissions from local sources; these emissions produce both intense plumes and neighborhood-level enhancements in PM$_1$ concentrations. In this section, we use mapping and land-use classification to investigate the details of intracity variability of PM$_1$ concentration and sources.

3.2.1. Mapping of Primary Carbonaceous PM$_1$ Components

Source-specific maps provide a reference for regulators to locate the hotspots of emission sources and can also enable epidemiologists to evaluate the health risks of PM emissions from specific sources. Emissions from different sources may vary in their risk levels, but there is no consensus yet about what sources are more harmful. Thus, concentration maps can be useful in the advancement of exposure analysis.

In Figure 2, there are important differences in the spatial patterns of local BC, HOA, and COA. For both local BC and HOA, the hot spots are located along the major truck routes. Near these truck routes, there are sharp gradients of local BC and HOA concentrations visible on the maps. This suggests that traffic emissions can lead to high near-road concentrations, but the impacts do not reach very far beyond the scale of a single 200 m grid cell. Local BC concentrations are generally higher than corresponding HOA concentrations. For example, in downtown Pittsburgh, the BC concentrations are often >2 μg m$^{-3}$, but the HOA concentrations are ~0.5 μg m$^{-3}$ and only slightly elevated above background. This may be a result of the fleet makeup (e.g., from transit bus operations) and operating condition (e.g., stop-and-go driving) in the downtown area or may simply reflect that emissions of organic aerosol from both gasoline and diesel vehicles have fallen rapidly in recent years.

Hot spots of COA appear as clusters on the map, and spatial gradients are clearly visible at the boundary of several communities (Figure 2c). These COA hot spots arise from the clustering of restaurants in urban environments. Some COA hot spots are co-incident with hot spots of HOA or BC (Downtown, Strip District, Oakland, and Lawrenceville), consistent with the large number of grid cells with both high traffic and high restaurant intensity. Other COA hot spots are dominated by cooking alone (Shadyside and Highland Park). Highland Park is mostly a residential area with several restaurants at the center, and the dominance of COA on the local air quality is clearly visible. In general, COA has similar, if not higher, concentrations than HOA and covers a wider range in residential area. Thus, cooking is worthy of more attention in future analysis of urban PM and OA exposure.

Variation of PM$_1$ Concentration by Land Use

In this section, we use the land-use classification defined in Figure 1c to evaluate the variation of PM concentration among different land-use classes. Figure 3 summarizes the average concentration and fractional contribution from each PM$_1$ component and PMF for three of the four land-use classes: low source, traffic, and high source (restaurant plus traffic). Data collected from summer (August and September) and winter (January and February) are presented separately to contrast the seasonal trends.

We empirically determined the precision of the AMS measurement to be 0.2 μg m$^{-3}$ for most OA factors, and AO for local and background BC. The bottom two panels show the fractional contribution from broader chemical families. Total OOA is equal to LOOOA plus MOOOA. POA (primary organic aerosol) is equal to BBOA plus HOA plus COA.
Environmental Science & Technology

Figure 4. (a, b) Average concentration (red circles) and standard error (black whiskers) of local BC and HOA vs decile groups of VMT. The linear fit for the average concentrations of each group is shown as blue lines. (c) Average concentration (red circles) and standard error (black whiskers) of COA vs restaurant count. The average concentrations are calculated for groups of grid cells with the same number of restaurants inside. Cells with 10 or more restaurants are combined in one group (Table S3). Blue lines show linear fits for all (solid lines) data points as well as the first seven (dashed lines) data points.

of traffic in the winter months may be the result of differences in activity or emission factor. Vehicle volumes and miles traveled are higher in the summer.41 Vehicle emissions may change with season or ambient temperature, although the exact relationship is uncertain, with some studies showing higher BC emissions in colder temperatures42 and others showing the reverse.43

Comparing high source (cooking added) with traffic land use, COA concentration increases by 0.7 μg m⁻³ in the summer and 0.6 μg m⁻³ in the winter. The consistent spatial pattern between seasons suggests similar cooking activity patterns and emission factors in summer and winter, consistent with stationary sources of COA, primarily restaurants.44 Overall, source-impacted areas have an additional ∼1−2 μg m⁻³ of primary PM₁ compared to low-source areas.

The comparison between land-use classes discussed above uses the empirically defined precision of OA factors and local BC to determine significant spatial differences between land-use classes. An ANOVA test also verified that the concentration differences between land use classes are statistically significant (Figure S7).

Secondary components have slight spatial variations that are season-specific. In summer, the LOOA concentration, representative of fresh secondary organic aerosol, is enhanced in high source land use by about 0.4 μg m⁻³ compared with the other two land-use types. This difference is nearly eliminated in winter (0.1 μg m⁻³), largely due to reduced photochemical activity and lower total LOOA concentrations (0.2 μg m⁻³ on average). In winter, nitrate concentrations are slightly enhanced in traffic and high source land use by 0.2 μg m⁻³ compared to low-source land use, while the differences are less than 0.1 μg m⁻³ in the summer. The enhancement of both the LOOA and nitrate concentration can be explained as a result of the oxidation of vehicular emissions of volatile and intermediate-volatility organic compounds and NOₓ in high-source areas.45−47

PM components typically associated with the regional background (sulfate, MOOOA, and background BC) are not spatially variable among land use classes. The differences in sulfate and MOOOA are around 0.1 μg m⁻³, suggesting that these components, which form over time scales longer than ~1 day, are regionally homogeneous for this domain. Background BC has no discernible spatial pattern among the land-use classes (differences less than 0.1 μg m⁻³) in both summer and winter; this is in contrast to local BC, which is elevated in high-traffic areas. The spatial homogeneity of background BC verifies the background correction methods we applied and also reflects the nonreactiveness of BC in the atmosphere. The other primary OA component, BBOA, has a seasonal difference (>0.2 μg m⁻³ between summer and winter) but no spatial variation among the land-use classes in both seasons (differences of less than 0.1 μg m⁻³). This finding suggests that BBOA is not an important localized source in our sampling domain and instead is likely transported from upwind locations.

Regardless of location, total OOA and inorganics are the most-important contributors to PM₁ in both the summer and the winter. Primary components of PM₁ make up 52% of total PM₁ in the worst case (high-source land use in winter) and 17% of total PM₁ in the best case (low-source land use in summer). In both seasons, the incremental exposure to PM₁ from low-source to high-source land use are approximately 2 μg m⁻³, and this can be largely attributed to the spatial variation of local BC, HOA, and COA concentrations.

3.3. Correlation between Land-Use Covariates and PM₁ Components. Statistical air pollutant spatial models, including land-use regression (LUR), use land-use covariates to predict spatial distributions of pollution.14,48 These covariates are generally applied to non-source-specific data (e.g., PM mass), and therefore, LUR attempts to attribute a fraction of measured PM mass to source categories that are related to the spatial covariates. Whether the covariates can effectively represent the concentration patterns near local sources is important to a successful LUR model.

We summarized the average concentration of local BC, HOA, and COA for all of the 200 m grid cells in our sampling domain. We also calculated values of two representative land-use covariates related to traffic and cooking emissions: annualized daily vehicle miles traveled (VMT) and restaurant counts for each grid cell. All of the grid cells are binned based on decile groups of VMT and integer restaurant counts. Figure 4 shows scatter plots of mean local BC, HOA, and COA concentrations of each bin against their related covariates.
These figures help reveal how concentrations of primary PM₁ components are related to land-use covariates.

The average concentrations of local BC and HOA are both linearly correlated with VMT ($R^2 = 0.97$ for local BC and 0.88 for HOA; Figure 4a,b). This suggests that VMT can be used as a reliable predictor of traffic-related primary PM concentration. Previous BC LURs²¹,⁴⁹ have leveraged this strong relationship between BC and traffic covariates.

The HOA-to-BC ratio is spatially variable and can be different by a factor of 2 depending on VMT. At lower VMT (<2000 miles per day), HOA and BC concentrations are approximately equal (HOA/BC ≈ 1). For the highest traffic bin (VMT = 10,000 miles per day), the HOA-to-BC ratio is 0.5, suggesting higher relative emissions of BC than HOA in extremely high traffic areas.

There are two possible explanations for this phenomenon. First, the vehicle fleet composition is spatially variable. Diesel trucks constitute a larger fraction of total VMT for grid cells with VMT > 3000 miles per day (the upper three deciles) than for grid cells with VMT < 3000 miles per day (Figure S8). Diesel vehicles, especially older vehicles not equipped with advanced after-treatment systems such as diesel particulate filters, have much-lower HOA-to-BC emission ratios than gasoline vehicles.³⁹ Absolute BC and HOA emissions from diesel vehicles are also larger than from gasoline vehicles, so small changes in the composition of the on-road vehicle fleet can have large impacts on overall fleet emissions.⁵⁰ Thus, cells with a higher fraction of diesel truck traffic should be expected to have lower HOA-to-BC ratios. Second, vehicle operating conditions are also spatially variable. Grid cells with VMT > 3000 miles per day are mostly highways (Figure S2), where traffic is often free-flowing at high speed. Cells with VMT < 3000 miles per day are surface streets in which vehicles travel at lower speed and often operate at stop-and-go conditions. The emission factors of both diesel and gasoline vehicles can vary by an order of magnitude depending on operating conditions, and there is evidence that the hot/cold start condition typical of urban driving increases HOA emissions more than BC.³¹,⁵² Thus, cells with stop-and-start traffic would be expected to have a higher HOA-to-BC ratio than cells containing highways, independent of fleet composition.

The total contribution of local traffic to PM₁ is the sum of local BC and HOA. The variable HOA-to-BC ratio in our data indicates that the total impact of traffic on PM₁ exposures cannot be determined from BC alone; the HOA concentration is not a linear transform of the local BC concentration. This demonstrates the value of the source-specific measurements presented here. We are able to determine the contribution of local traffic to PM₁ in each grid cell because of the chemical specificity of the AMS.

We believe that restaurant count may not be a perfect indicator for cooking emissions for two main reasons. First, it excludes multiple sources of cooking emissions: household cooking, food trucks, and noncommercial outdoor grilling activities. All of these activities can be significant cooking emission sources for local environments. Unfortunately, data that can reliably quantify the emissions from such sources at a high spatial resolution do not exist. Second, the emission rate of an individual restaurant may be largely dependent on the cooking style and the activity level.⁵³ Meat grilling can be more polluting than sushi making, and a large restaurant can have larger emissions than a smaller one with a similar cooking style. These factors are not captured in the restaurant count statistics. Future analysis may benefit from more detailed information for each restaurant, such as cooking style and daily average number of guests.

COA is also correlated with traffic volume (Figures S7 and S9). For grid cells with VMT < 3000 miles per day, COA concentration increases with VMT (Figure S9). This is likely a result of many restaurants being located in high-traffic areas. COA is not correlated with VMT for the highest-traffic cells (VMT > 3000 miles per day) because these cells are highways. Thus, in studies in which source apportionment of PM is not available, the traffic contribution to near-road PM concentrations may be over-estimated if land-use covariates associated with restaurants are not explicitly considered.

3.4. Source-Resolved Distribution of Population PM Exposures

PM₁ concentration, source impact, and the population are all spatially variable. Thus, it can be difficult to determine which emission source has the largest impact on human exposure in an urban environment. In this section, we use the spatial distribution of population to assess the spatially resolved exposure to local primary PM from traffic (local BC plus HOA) and cooking (COA) emissions. We followed methods similar to those described in Apte et al.⁵⁴ and Brauer et al.⁵⁵ for use in the Global Burden of Disease study.

We ranked the average concentrations of each PM component from all of the 200 m grid cells and created 50 equal bins on a logarithmic scale. A sum of population from all of the grid cells that fall within each bin were calculated and a population distribution is thus constructed. It is important that this process is done for each type of land use separately. The population distribution in the sampling domain does not match the population distribution in Allegheny County; our sampling domain is biased toward high-source and high-traffic areas. The bias of the sampled domain can be adjusted by the population coverage ratio (R_{PC}), which is described in eq 1 and shown in Table S5:

$$R_{PC} = \frac{P_{S}}{P_{LUT}}$$

R_{PC} is the population coverage ratio for a specific type of land-use. P_{S} is the residential population that are covered by the sampling domain in this type of land-use. P_{LUT} is the actual residential population in this type of land-use in the whole county.

The population distribution for the entire Allegheny County, which includes all types of land-use, is reconstructed following eq 2, where the population from each land-use in the i-th bin are weighted by R_{PC} and added together. A population distribution curve can be constructed for each specific PM component, and the area under each curve represents the total...
population in the county. This curve is then normalized for use in Figure 5 as a probability distribution:

\[P_i = \sum_{N=1}^{4} \frac{P_3(N,i)}{R_{PC(N)}} \tag{2} \]

Figure 5. Normalized probability distribution of residential population over the measured OA and BC concentration range. The impact from traffic is the sum of the local BC and HOA concentrations.

\(P_i \) is the adjusted population within the \(i \)-th bin of concentration range. \(P_3(N,i) \) is the population within the \(N \)-th type of land-use that are covered by the sampling domain. \(R_{PC(N)} \) is the population coverage ratio for the \(N \)-th type of land-use.

Figure 5 shows the normalized population distributions for outdoor cooking and traffic PM exposures. Each curve in Figure 5 captures the full population; the integral under every curve is unity. The four curves all follow log-normal distributions, and the medians of each curve fall between 0.1 to 1.0 \(\mu g \) m\(^{-3}\). Primary traffic emissions are clearly more impactful than cooking on a population-weighted basis. For Allegheny county, 55%, 28%, and 9% of the population are exposed to >0.5, >1, and >2 \(\mu g \) m\(^{-3}\) of traffic-related local primary PM\(_1\), respectively; the numbers for cooking-related PM\(_1\) are 31%, 9%, and 2%, respectively.

Cooking emissions constitute an important part of overall primary PM exposures. Curves for cooking, local BC, and HOA are similar in their medians (0.2–0.3 \(\mu g \) m\(^{-3}\)), and cooking is more important than HOA as a source of exposure to primary organic aerosol. Policies to reduce emissions from restaurant cooking, such as the installation of filters on restaurant vent hoods, could reduce PM exposures by \(\sim 0.3 \mu g \) m\(^{-3}\) for the entire county population, with much larger reductions (\(>1 \mu g \) m\(^{-3}\)) in some high-source neighborhoods with high restaurant densities.

Figure 5 only quantifies exposures to local primary emissions that drive a large fraction of the observed intracity spatial variability. Background BC concentrations, while spatially homogeneous in our sampling domain, are at least partially the result of upwind emissions from vehicular traffic. Vehicular emissions are also an important contributor to the burden of secondary OA\(^{46-48}\) and PM nitrate,\(^{49}\) and Figure 3 shows that concentrations of the LOOOA factor, which we interpret as “fresh” secondary OA, are elevated in high-source areas. Thus, Figure 5 likely underestimates the total PM exposure that can be assigned to vehicular emissions.

Probability distributions of population like those shown in Figure 5 are a useful way to examine the intracity spatial variability of outdoor PM\(_1\) exposure. However, Figure 5 assumes that each person’s exposure is governed by the outdoor concentration at their home address. This assumption may lead to exposure misclassification because people may be exposed to emissions from indoor sources\(^{50}\) as well as outdoor sources, and exposures occur at places other than the home. Indoor exposure is beyond the scope of this study. The proportion of indoor exposure that originates from outdoor emissions can be highly variable in different environments,\(^{57}\) and we lack the data to reliably address this issue here. To test the sensitivity of our exposure estimates to population mobility, we recalculated the population exposures using commuter-adjusted population (Figure S10 and section S.7 of the Supporting Information). The overall conclusion that traffic is the major source of exposure to primary PM, and that cooking is also important, is robust to the assumptions about population mobility.

Emissions sources in many U.S. and European cities are dominated by traffic and cooking sources. Thus, we expect to observe similar spatial patterns of PM concentration and exposure in most cities, even in cases in which there remain major industrial emissions sources. Preliminary analysis of data collected in Oakland, CA\(^{58}\) reflect the basic spatial patterns presented here: PM\(_1\) spatial variations are dominated by carbonaceous sources, and PM\(_1\) concentrations are highest in source-rich environments.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.8b03833.

Additional details, figures, and tables outlining land-use covariates and the spatial-joining processes, discussion of PMF solution, background correction for BC measurement, seasonal PM\(_1\) characteristic variations, carbonaceous components, the cumulative distribution of spatially joined average concentrations, residential population vs commuter-adjusted population, and the precision of AMS factor analysis (PDF).

AUTHOR INFORMATION

Corresponding Author

*E-mail: apresto@andrew.cmu.edu.

ORCID

Ellis S. Robinson: https://orcid.org/0000-0003-1695-6392
Joshua S. Apte: 0000-0002-2796-3478
Allen L. Robinson: 0000-0002-1819-083X
Albert A. Presto: 0000-0002-9156-1094

Author Contributions

A.A.P., A.L.R., and J.S.A. designed research. P.G., H.Z.L., Q.Y., and E.S.R. performed research. P.G. and A.A.P. wrote the paper with input from all authors.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This publication was developed under Assistance Agreement no. RD83587301 awarded by the U.S. Environmental Protection Agency (EPA) and the National Science Foundation grant no. AGS1543786. This publication has not been reviewed by the EPA or the NSF. The views expressed in
REFERENCES

