Short-term exposure to ambient air pollution and circulating biomarkers of endothelial cell activation: The Framingham Heart Study

Wenyuan Li, Kirsten S. Doran, Elissa H. Wilker, Mary B. Rice, Petter L. Ljungman, Joel D. Schwartz, Brent A. Coull, Petros Koutrakis, Diane R. Gold, John F. Keaney, Jr., Ramachandran S. Vasan, Emelia J. Benjamin, Murray A. Mittleman

ARTICLE INFO

Keywords:
Air pollution
Endothelial dysfunction
Inflammation
Biomarker
Environment
Epidemiology

ABSTRACT

Background: Short-term exposure to air pollution has been associated with cardiovascular events, potentially by promoting endothelial cell activation and inflammation. A few large-scale studies have examined the associations and have had mixed results.

Methods: We included 3820 non-current smoking participants (mean age 56 years, 54% women) from the Framingham Offspring cohort examinations 7 (1998–2001) and 8 (2005–2008), and Third Generation cohort examination 1 (2002–2005), who lived within 50 km of a central monitoring station. We calculated the 1- to 7-day moving averages of fine particulate matter (PM2.5), black carbon (BC), sulfate (SO4\(^{2-}\)), nitrogen oxides (NOx), and ozone before examination visits. We used linear mixed effect models for P-selectin, monocyte chemotactic protein 1 (MCP-1), intercellular adhesion molecule 1, lipoprotein-associated phospholipase A2 activity and mass, and osteoprotegerin that were measured up to twice, and linear regression models for CD40 ligand and interleukin-18 that were measured once, adjusting for demographics, lifestyle and clinical factors, socioeconomic position, time, and meteorology.

Results: We found negative associations of PM2.5 and BC with P-selectin, of ozone with MCP-1, and of SO4\(^{2-}\) and NOx with osteoprotegerin. At the 5-day moving average, a 5 µg/m3 higher PM2.5 was associated with 1.6% (95% CI: −2.8, −0.3) lower levels of P-selectin; a 10 ppb higher ozone was associated with 1.7% (95% CI: −3.2, −0.1) lower levels of MCP-1; and a 20 ppb higher NOx was associated with 2.0% (95% CI: −3.6, −0.4) lower levels of osteoprotegerin.

Conclusions: We did not find evidence of positive associations between short-term air pollution exposure and endothelial cell activation. On the contrary, short-term exposure to higher levels of ambient pollutants were associated with lower levels of P-selectin, MCP-1, and osteoprotegerin in the Framingham Heart Study.

1. Introduction

Short-term exposure to ambient air pollution has been associated with acute cardiovascular events (Brook et al., 2004, 2010). One of the hypothesized underlying mechanisms is air pollution-induced oxidative stress and inflammation. Higher levels of oxidative stress and inflammation in the vascular system promote platelet and endothelial cell activation, leading to increased tendency towards thrombosis and erosion and/or disruption of atherosclerotic plaque (Davi and Patrono, 2007; Gawaz et al., 2005; Stokes and Granger, 2012; Szmitko et al., 2003a; Wagner and Burger, 2003). For example, CD40 ligand and P-selectin are released upon platelet activation and may enhance endothelial inflammation and upregulate expression of chemokines (such as monocyte chemotactic protein 1 (MCP-1)) and adhesion...
molecules (such as intercellular adhesion molecule 1 (ICAM-1)), altering the properties of the endothelium and contributing to the formation of atherosclerotic plaque (Davi and Patrono, 2007; Gawaz et al., 2005; Stokes and Granger, 2012; Szmitko et al., 2003a; Wagner and Burger, 2003). Increased vascular inflammation also stimulates secretion of biomarkers such as interleukin-18, lipoprotein-associated phospholipase A2 (LpPLA2), and osteoprotegerin. Higher levels of interleukin-18 and LpPLA2 are associated with plaque disruption and thrombosis (Jensen et al., 2014; Szmitko et al., 2009b), and higher levels of osteoprotegerin are associated with vascular calcification in human studies (Van Campenhout and Golledge, 2009; Vassalle and Mazzone, 2016; Venuraju et al., 2010). Fig. 1 illustrates the involvement of these biomarkers.

Several prior studies have examined the associations between short-term exposure to air pollutants and the aforementioned biomarkers that are involved in endothelial cell activation (Bind et al., 2012; Bruske et al., 2011; Day et al., 2017; Delfino et al., 2009; Frampton et al., 2012; Gong et al., 2003; Hajat et al., 2015; Hildebrandt et al., 2009; Krishnan et al., 2013; Li et al., 2017a; Liu et al., 2017; Madrigano et al., 2010; O’Neill et al., 2007; Pope et al., 2016; Rich et al., 2012; Ruckerl et al., 2014, 2007; Saha et al., 2016; Wilker et al., 2011; Wu et al., 2012, 2016). While some of these studies found positive associations between some air pollutants and CD40 ligand (Frampton et al., 2012; Li et al., 2017a; Liu et al., 2017; Rich et al., 2012), P-selectin (Day et al., 2017; Delfino et al., 2009; Li et al., 2017a; Liu et al., 2017; Rich et al., 2012), MCP-1 (Li et al., 2017; Pope et al., 2016), and ICAM-1 (Bind et al., 2012; Wilker et al., 2011), the findings were generally inconsistent across different air pollutants or studies, possibly because most of these previous studies were conducted with small sample sizes, limited age range, or among participants with conditions that may predispose them to the adverse health effects of air pollution. Some other studies have found null associations with interleukin-18 (Pope et al., 2016), positive associations with LpPLA2 mass (Bruske et al., 2011), and negative associations with osteoprotegerin (Saha et al., 2016).

Among participants from the Framingham Heart Study, we have found associations between short-term exposure to ambient air pollution and biomarkers of oxidative stress (Li et al., 2016) and systemic inflammation (Li et al., 2017b). However, the associations for biomarkers of endothelial cell activation and atherosclerotic plaque have not been examined.

We therefore hypothesized that short-term exposure to higher levels of ambient air pollution is associated with higher levels of biomarkers of endothelial cell activation. We investigated the associations among participants from the Framingham Heart Study.

2. Methods

2.1. Study sample

We included participants from the Framingham Offspring cohort examinations 7 (1998–2001) and 8 (2005–2008), and Third Generation cohort examination 1 (2002–2005). The study design and selection criteria of the two cohorts have been described elsewhere (Kannel et al., 1979; Splansky et al., 2007). We restricted our analyses to 4540 participants (6192 observations) who lived within 50 km from the Harvard Supersite air pollution monitor in Boston, Massachusetts. Interleukin-18 levels that were under the minimum detection limit (128 pg/ml) were treated as missing (N = 162). We then excluded 879 observations contributed by current smokers because levels of inflammatory biomarkers may be influenced by smoking and may interfere with our ability to assess the relatively small variation in these biomarkers that can be attributed to ambient air pollution (Levitzky et al., 2008). Last, we excluded 97 observations where data on body mass index, alcohol intake, or pack years of smoking were missing, leaving 3820 participants (5216 observations) in the final dataset. At each examination visit, physical examinations were performed following standardized protocols, and data on demographics, medication history, smoking history, and alcohol intake were collected using standardized questionnaires. All participants provided written informed consent at each examination, and the Institutional Review Boards at Beth Israel Deaconess Medical Center, Harvard T.H. Chan School of Public Health, and Boston University Medical Center approved the study.

2.2. Air pollution and meteorology assessment

We calculated 1-, 2-, 3-, 5-, and 7-day moving averages of the air pollutants prior to the date of examination visit, based on measures of fine particulate matter (particles with diameters ≤ 2.5 µm; PM2.5), black carbon (BC), and sulfate (SO42−) from the Boston Harvard Supersite air pollution monitoring station, and measures of nitrogen oxides (NOx) and ozone (O3) from local state monitors within the Greater Boston area (three for NOx and two for O3) (Kang et al., 2010; Mehta et al., 2014). The 1-day moving average (lag 0) was calculated as the average from 9:00 a.m. on the day before examination date to 9:00 a.m. on the day of examination visit. The 2-day moving average was calculated as the mean of lag 0 and lag 1. If more than 25% of the days for a moving average were missing, we assigned “missing” to that moving average.

The Supersite monitor is located on the rooftop of the Francis A. Countway Library of Medicine (5 stories above ground level) and 50 m from the nearest street. PM2.5 was measured using a tapered element oscillating microbalance (Model 1400A, Rupprecht & Patashnick Co., Inc.); BC was measured using an aethalometer (Model AE16, Magee...
Table 1

Characteristics of the 3820 participants (5216 observations) from the Framingham Offspring and Third Generation cohorts.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Offspring cohort mean(SD) or N[%]</th>
<th>Third Generation cohort mean(SD) or N[%]</th>
<th>Overall mean(SD) or N[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cycle 7</td>
<td>Cycle 8</td>
<td>Cycle 1</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1846</td>
<td>1549</td>
<td>1821</td>
</tr>
<tr>
<td>Age, years</td>
<td>61.7 (9.5)</td>
<td>67.3 (9.1)</td>
<td>40.1 (8.9)</td>
</tr>
<tr>
<td>Women</td>
<td>987 [53.5]</td>
<td>836 [54.0]</td>
<td>971 [53.3]</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>28.4 (5.3)</td>
<td>28.6 (5.4)</td>
<td>27.0 (5.6)</td>
</tr>
<tr>
<td>Alcohol, drinks/week</td>
<td>4.5 (7.0)</td>
<td>4.0 (6.7)</td>
<td>4.3 (6.2)</td>
</tr>
<tr>
<td>Smoking status</td>
<td>Non-smoker 792 [42.9]</td>
<td>665 [42.9]</td>
<td>1255 [68.9]</td>
</tr>
<tr>
<td></td>
<td>Former smoker 1054 [57.1]</td>
<td>884 [57.1]</td>
<td>566 [31.1]</td>
</tr>
<tr>
<td></td>
<td>Pack year 14.1 (20.6)</td>
<td>14.1 (20.6)</td>
<td>3.5 (9.0)</td>
</tr>
<tr>
<td></td>
<td>Hypertensive use 681 [36.9]</td>
<td>920 [59.4]</td>
<td>186 [10.2]</td>
</tr>
<tr>
<td></td>
<td>Diabetes use 422 [22.9]</td>
<td>661 [42.7]</td>
<td>124 [6.8]</td>
</tr>
<tr>
<td>CD40 ligandb, ng/ml</td>
<td>1.6 (2.0)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ICAM-1c, ng/ml</td>
<td>244.8 (57.9)</td>
<td>291.3 (91.4)</td>
<td>240.1 (57.8)</td>
</tr>
<tr>
<td>Interleukin-18b, pg/ml</td>
<td>250.8 (94.6)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>LpPLA2 activityb, nmol/min/ml</td>
<td>138.2 (34.4)</td>
<td>134.2 (34.8)</td>
<td>160.8 (36.6)</td>
</tr>
<tr>
<td>LpPLA2 massb, ng/ml</td>
<td>282.5 (89.6)</td>
<td>192.5 (51.4)</td>
<td>225.8 (46.2)</td>
</tr>
<tr>
<td>MCP-1c, pg/ml</td>
<td>312.4 (104.4)</td>
<td>374.4 (116.2)</td>
<td>331.1 (109.9)</td>
</tr>
<tr>
<td>P-selectinc, ng/ml</td>
<td>35.3 (13.3)</td>
<td>39.1 (12.6)</td>
<td>45.4 (16.8)</td>
</tr>
<tr>
<td>Osteoprotegerinb, pmol/l</td>
<td>5.4 (1.7)</td>
<td>4.8 (1.6)</td>
<td>–</td>
</tr>
</tbody>
</table>

Abbreviation: SD, standard deviation; ICAM-1, intercellular adhesion molecule 1; LpPLA2, lipoprotein-associated phospholipase A2; MCP-1, monocyte chemotactic protein 1.

2 Geometric mean and standard deviation.

3 1352 participants had two measurements of ICAM-1, 1376 participants had two measurements of LpPLA2 activity and LpPLA2 mass, 1328 participants had two measurements of MCP-1, 1395 participants had two measurements of P-selectin, and 1392 participants had two measurements of osteoprotegerin.

2- was measured from elemental sulfur that was measured by X-Ray Fluorescence analysis of the PM2.5 filter samples. On days when SO42- X-Ray Fluorescence data were not available, we used an SO42- analyzer (Model 5020, Thermo Electron Corp.).

2.3. Biomarker assessment

All blood samples were obtained after an overnight fast, typically between 7 and 9 a.m. Blood specimens were stored at −80°C until assay. Commercially available enzyme-linked immunoassay kits were used to assess P-selectin, MCP-1, ICAM-1 (R&D Systems, Minneapolis, MN); CD40 ligand (Bender MedSystems, Vienna, Austria); interleukin-18 (MBL, Woburn, MA); and osteoprotegerin (BioMedica Incorporate, San Diego, CA). LpPLA2 activity was measured using a commercially available sandwich enzyme immunoassay (diaDexus PLAC Test, Inc., San Francisco, CA). LpPLA2 mass was measured using a commercially available sandwich enzyme immunoassay (diaDexus PLAC Test, Inc., San Francisco, CA). Details regarding biomarker measurements have been reported elsewhere (Hong et al., 2013; Murabito et al., 2009; Shoamanesh et al., 2015) and can also be found at the Framingham Heart Study website (https://www.framinghamheartstudy.org).

2.4. Statistical methods

Because P-selectin, MCP-1, ICAM-1, LpPLA2 activity, LpPLA2 mass, and osteoprotegerin were measured in both Offspring cohort examination 7 (1998–2001) and 8 (2005–2008), we used multivariable linear mixed effects models with participant-specific random intercepts. We used multivariable linear regression models for CD40 ligand and interleukin-18 that were measured only once in the Offspring cohort examination 7. Levels of the biomarkers were log₂ transformed to meet the model assumptions, assessed by residual plots.

For each moving average, the model was adjusted for demographic variables, individual-level socioeconomic position, census tract-level socioeconomic position, lifestyle factors, clinical factors, time, and meteorology. The covariates were selected because of their role as potential confounders or predictors of the outcome. The demographic variables included centered age at the time of examination visit, (centered age)², and sex. For individual-level socioeconomic position, we adjusted for educational attainment (high school or less, some college, and college graduate) and usual occupation (laborer; sales/home-maker/clerical; professional/executive/supervisory/technical; and unspecified) (Li et al., 2017b; Loucks et al., 2009). For census tract-level socioeconomic position, we adjusted for median household income (continuous), median value of owner-occupied housing units (continuous), and population density (people/km², continuous), from U.S. Census 2000 data. For lifestyle factors, we included body mass index, alcohol intake (drinks/week; standardized to 15 ml alcohol/drink, continuous), pack years of smoking (continuous), smoking status (never or former smoker), and tertiles of physical activity index (Kannel and Sorlie, 1979). For clinical factors, we adjusted for cardiovascular disease status, use of antihypertensive medications, and use of statins, all as binary variables. We adjusted for time by including a linear term of examination date, for seasonality by including sine and cosine terms of the examination date, and for meteorology by adding temperature and relative humidity. Last, we added an examination cycle identifier for biomarkers that were measured in multiple examinations to account for potential batch effects. We created missing indicators for participants with missing data on educational attainment (34 observations) or physical activity (88 observations).

We conducted a sensitivity analysis restricting analyses to...
participants who lived within 40 km (4456 observations, 85%) from the central site. We also examined whether associations differed by age (≤ / > 65 years old), sex, and diabetes status. Due to the moderate negative correlation between NO₂ and O₃ (r = −0.55), we conducted a post-hoc sensitivity analysis and included both pollutants in the same model. Last, we examined the associations between moving averages of daily maximum 8-h O₃ and the levels of measured biomarkers.

Parameter estimates (βs) were scaled by a factor close to the interquartile range of the 1-day moving average: 5 μg/m³ for PM₂.₅, 0.5 μg/m³ for BC, 2 μg/m³ for SO₄^{2-}, 20 ppb for NOₓ, and 10 ppb for O₃.

We reported percent difference ((e(scaled β)-1)×100%) with 95% confidence intervals (CIs). In interpreting the results, we focused on describing and highlighting association patterns that were consistently observed across multiple moving averages of the pollutants. Analyses were performed using PROC GLM and PROC MIXED in SAS 9.4 (SAS Institute, Inc., Cary, NC). Figures were plotted using Stata 13 (StataCorp LP, College Station, TX).

3. Results

Of the 5216 observations, the mean age was 56 years old (standard deviation (SD): 15) and 2794 (54%) were from women (Table 1). The mean level of the 1-day moving average PM₂.₅ was 10.2 μg/m³ (SD: 6.1). As expected, the correlations between PM₂.₅, BC, and SO₄^{2-} were moderate to high, and NOₓ was negatively correlated with O₃ (Table 2). The distribution of measured pollutants are shown in Supplemental Figure 1.

Higher levels of exposure to PM₂.₅ and BC were associated with lower levels of P-selectin: a 5 μg/m³ higher 5-day moving average of PM₂.₅ and a 0.5 μg/m³ higher 5-day moving average of BC were associated with 1.6% (−2.8, −0.3) and 1.8% (−3.7, 0.1) lower levels of P-selectin, respectively (Fig. 2B). Exposure to higher levels of 1- to 5-day moving averages of O₃ before exam visit was associated with lower levels of MCP-1: a 10 ppb higher 5-day moving average of O₃ was associated with 1.7% (−3.2, −0.1) lower levels of MCP-1 (Fig. 2C). We also found that higher levels of exposure to SO₄^{2-} and NOₓ were associated with lower levels of osteoprotegerin: for the 5-day moving average of SO₄^{2-} were associated with 1.1% (−2.3, 0.2) and 2.0% (−3.6, −0.4) lower levels of osteoprotegerin, respectively (Fig. 2E). Higher exposure to O₃ at longer moving averages were associated with higher levels of interleukin-18 (Fig. 2F) and LpPLA2 mass (Fig. 2G). The associations otherwise appeared to be generally null.

Restricting the study sample to participants who lived within 40 km from the Supersite, or replacing daily 24-h average O₃ with daily maximum 8-h O₃ did not alter our results materially (Supplemental Figures 2 and 3). In analyses where we included both NOₓ and O₃ in the same model, both NOₓ and O₃ appeared to be positively associated with interleukin-18 across multiple moving averages (Supplemental Figure 4). Among participants with diabetes, we observed consistent and positive associations of PM₂.₅, BC, and SO₄^{2-} with ICAM-1 over multiple moving averages (Fig. 3A). We also observed positive associations of BC with MCP-1 among participants with diabetes, and of SO₄^{2-} with MCP-1 among participants younger than 65 years old (Fig. 3B and C). However, the differing association pattern was not observed between other pollutants and MCP-1. The associations otherwise did not differ by age of 65 years old, sex, or diabetes status (Supplemental Figures 5–7).

4. Discussion

Among participants from the Framingham Offspring and Third Generation cohorts, we found negative associations of PM₂.₅ and BC with P-selectin, of O₃ with MCP-1, and of SO₄^{2-} and NOₓ with osteoprotegerin; the associations otherwise appeared to be null. There was no consistent association for ICAM-1 in the overall study sample, however, higher levels of exposure to PM₂.₅, BC, and SO₄^{2-} were associated with higher levels of ICAM-1 among participants with diabetes.

The current study adds to our previous work in the Framingham Heart Study (Li et al., 2017b, 2016), in which we found short-term exposure to higher levels of ambient air pollution was associated with higher levels of myeloperoxidase, indexed 8-epi-PGF₂α (Li et al., 2016), C-reactive protein (CRP), interleukin-6, and tumor necrosis factor receptor 2 (TNFR2), but not with fibrinogen or TNFα (Li et al., 2017b). Together we have provided a comprehensive coverage of the associations between short-term exposure to ambient air pollution and biomarkers of oxidative stress, systemic inflammation, and endothelial cell activation among participants from the community-based Framingham Heart Study. Because the magnitude of observed negative associations were rather small and the associations observed were likely transient, the interpretation of our findings may not be suitable for clinical interpretation.

Both CD40 ligand and P-selectin are released upon platelet and endothelial cell activation, and induce the production of reactive oxygen species, adhesion molecules, chemokines, and other inflammatory biomarkers (Davi and Patrono, 2007; Gawaz et al., 2005; Szmikto et al., 2003a). Some studies have found positive associations of short-term exposure to air pollution with CD40 ligand (Frampton et al., 2012; Li et al., 2017a; Liu et al., 2017; Rich et al., 2012) and P-selectin (Day et al., 2017; Delfino et al., 2009; Li et al., 2017a; Liu et al., 2017; Rich et al., 2012), but not all (Frampton et al., 2012; Pope et al., 2016; Ruckerl et al., 2014, 2007; Wu et al., 2012). Moreover, one of the studies found a negative association for CD40 ligand (Pope et al., 2016). However, these studies were all conducted among a relatively small number of participants (Frampton et al., 2012; Pope et al., 2016), and many were conducted in regions with higher levels of air pollution than the current study (Day et al., 2017; Li et al., 2017a; Liu et al., 2017; Rich et al., 2012; Wu et al., 2012).

In the current study, we found generally null associations between PM₂.₅ and MCP-1 and ICAM-1, except that among potentially susceptible participants who had type 2 diabetes, we found positive associations between PM₂.₅ and ICAM-1. Expression of both MCP-1 and ICAM-1 by endothelial cells are upregulated upon stimulation by pro-inflammatory cytokines (Davi and Patrono, 2007; Gawaz et al., 2005). Prior studies of the associations between PM₂.₅ and MCP-1 have had inconsistent results; two studies reported positive associations (Liu et al., 2017; Pope et al., 2016), but the association appeared to be null.

Table 2

Characteristics and the Spearman correlation coefficients between the 1-day moving averages of measured ambient air pollutants.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Number of observations</th>
<th>Mean (SD)</th>
<th>Interquartile range</th>
<th>Spearman correlation coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM₂.₅, μg/m³</td>
<td>5206</td>
<td>10.2 (6.1)</td>
<td>6.4</td>
<td>0.73, 0.82, 0.41, 0.00</td>
</tr>
<tr>
<td>BC, μg/m³</td>
<td>5206</td>
<td>0.8 (0.5)</td>
<td>0.5</td>
<td>0.53, 0.57, −0.25</td>
</tr>
<tr>
<td>SO₄^{2-}, μg/m³</td>
<td>4461</td>
<td>3.2 (2.5)</td>
<td>2.4</td>
<td>0.28, 0.11, −0.55</td>
</tr>
<tr>
<td>NOₓ, ppb</td>
<td>4912</td>
<td>39.1 (21.0)</td>
<td>19.7</td>
<td></td>
</tr>
<tr>
<td>O₃, ppb</td>
<td>5207</td>
<td>23.2 (11.2)</td>
<td>15.4</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: PM₂.₅, fine particulate matter; BC, black carbon; SO₄^{2-}, sulfate; NOₓ, nitrogen oxides; O₃, ozone.
Fig. 2. Associations of 1- to 7-day moving averages of air pollutants with A) CD40 ligand; B) P-selectin; C) monocyte chemoattractant protein 1 (MCP-1); D) intercellular adhesion molecule 1 (ICAM-1); E) osteoprotegerin; F) interleukin-18; G) lipoprotein-associated phospholipase A2 (LpPLA2) mass; and H) LpPLA2 activity. Models were adjusted for centered age, (centered age)2, sex, body mass index, smoking status, pack years, alcohol intake, educational attainment, usual occupations, tertiles of physical activity index, census tract median household income, census tract population density, census tract median value of owner-occupied housing unit, cardiovascular disease, use of antihypertensives, use of statins, date of examination visit, sine and cosine season, day of week, temperature, and relative humidity. An exam identifier was added for P-selectin, MCP-1, ICAM-1, osteoprotegerin, LpPLA2 mass, and LpPLA2 activity. Results were scaled to 5 μg/m3 for PM$_{2.5}$, 0.5 μg/m3 for BC, 2 μg/m3 for SO$_4^{2-}$, 20 ppb for NO$_x$, and 10 ppb for O$_3$. Error bars indicate the 95% confidence intervals.

Fig. 3. Associations of 1- to 7-day moving averages of air pollutants with A) ICAM-1 and B) MCP-1 by diabetes status, and with C) MCP-1 by age of 65 years old. Models were adjusted for centered age, (centered age)2, sex, body mass index, smoking status, pack years, alcohol intake, educational attainment, usual occupations, tertiles of physical activity index, census tract median household income, census tract population density, census tract median value of owner-occupied housing unit, cardiovascular disease, use of antihypertensives, use of statins, date of examination visit, sine and cosine season, day of week, temperature, relative humidity, and an examination identifier. Results were scaled to 5 μg/m3 for PM$_{2.5}$, 0.5 μg/m3 for BC, 2 μg/m3 for SO$_4^{2-}$, 20 ppb for NO$_x$, and 10 ppb for O$_3$. Error bars indicate the 95% confidence intervals.
in another study (Li et al., 2017a). The association between PM$_{2.5}$ and ICAM-1 has been examined in a larger number of studies (Bind et al., 2012; Gong et al., 2003; Hajat et al., 2015; Hildebrandt et al., 2009; Krishnan et al., 2013; Li et al., 2017a; Liu et al., 2017; Madrigano et al., 2010; O’Neill et al., 2007; Pope et al., 2016; Wilker et al., 2011; Wu et al., 2016) and several of them had a relatively large sample size (Bind et al., 2012; Hajat et al., 2015; Madrigano et al., 2010; Wilker et al., 2011); however, the findings were not consistent across studies. For example, in the Multi-Ethnic Study of Atherosclerosis (MESA), Hajat et al. found negative associations between the 3- to 5-day moving averages of PM$_{2.5}$ and ICAM-1 among 2865 participants (4007 observations in total), and reasons for this negative association were unclear (Hajat et al., 2015). Moreover, PM$_{2.5}$ was positively associated with ICAM-1 in two reports from the Normative Aging Study (Bind et al., 2012; Wilker et al., 2011).

Sustained baseline inflammation among participants with diabetes may upregulate the inflammatory response to air pollutants (Dubowsky et al., 2006), and in our previous work we found a larger magnitude of the associations of short-term air pollution with C-reactive protein and interleukin-6 among participants with diabetes than those without (Li et al., 2017b). In the current study, we found positive associations of PM$_{2.5}$, BC, and SO$_4^{2-}$ with ICAM-1 across multiple moving averages among participants with diabetes, suggesting potentially higher susceptibility to air pollution among individuals with diabetes.

Both interleukin-18 and LpPLA2 are highly expressed in atherosclerotic plaque, and may result in increased risk of plaque disruption and thrombosis (Szmikto et al., 2003a, 2003b). LpPLA2 is an enzyme that hydrolyses oxidized phospholipids and generates oxidized free fatty acids and lysophosphatidylcholine, promoting atherogenesis and plaque formation (Jensen et al., 2014; Szmikto et al., 2003b). Previous small-scale studies have found null associations of PM$_{2.5}$ with interleukin-18 among 72 healthy young participants (Pope et al., 2016), but positive associations with LpPLA2 mass among 200 myocardial infarction survivors (Brucke et al., 2011). The associations were generally null in the current study. It is possible that the different study sample characteristics contributed to the discrepancies between the current study and previous studies; the study participants in the current study were middle-aged and older, and were generally healthy with relatively low prevalence of cardiovascular disease and diabetes.

The exact role of osteoprotegerin in vascular biology is not clear. In controlled animal studies, osteoprotegerin was found to be a protective factor against atherosclerotic calcification (Van Campenhout and Golledge, 2009; Vassalle and Mazzone, 2016; Venuraju et al., 2010). However, in human studies, osteoprotegerin was positively associated with vascular calcification and coronary heart disease (di Giuseppe et al., 2017; Kiech et al., 2007, 2004; Nyrnes et al., 2012; Semb et al., 2009; Stenemo et al., 2018; Szulc et al., 2017). It has been proposed that the elevated osteoprotegerin level was the result of a compensatory mechanism (Venuraju et al., 2010). We found negative associations of SO$_4^{2-}$ and NO$_x$ with osteoprotegerin, similar to the previous study where negative associations were observed between indoor PM$_{2.5}$ from burning of biomass and osteoprotegerin (Saha et al., 2016).

In summary, in the current study we examined the associations between short-term exposure to ambient air pollution and several biomakers of endothelial cell activation, and found that the associations were generally null or negative, except for longer moving averages of O$_3$ with interleukin-18 and LpPLA2 mass. This divergent associations may represent different underlying biological pathways: while P-selectin and MCP-1 are related to platelet activation and stimulation from pro-inflammatory cytokines, and osteoprotegerin is potentially related to vascular calcification, interleukin-18 and LpPLA2 are potentially related to existing plaques. However, the exact biological mechanism remains unclear. As we mentioned before, not many large-scale studies have examined the associations between short-term exposure to air pollution and the biomarkers that were measured in the current study. Thus, future large-scale studies are needed to examine these associations.

There are several limitations in the current study. First, we measured levels of air pollution at a central air pollution monitor. Previous studies in the Boston region have found moderate correlations between central site measured PM$_{2.5}$ and SO$_4^{2-}$ and personal exposure levels (regression slope was 0.3 in winter and 0.8-0.9 in summer for PM$_{2.5}$; and was 0.4-0.6 in winter and 0.7 in summer for SO$_4^{2-}$) (Brown et al., 2008; Sarnat et al., 2005), which supports the rationale of exposure assignment. Moreover, this potential exposure measurement error was likely non-differential. Second, participants from the Framingham Heart Study are mostly middle-aged and older adults of European ancestry; our findings may not be generalizable to different age groups or races/ethnicities. Last, although we adjusted for many potential confounders, we cannot rule out residual or unmeasured confounding, and cannot ascertain temporality in the current study. Thus, the observed associations should not be used to infer causality.

There are also several strengths of the current study. The current study is among a few large-scale studies that included participants from a community-based cohort and examined the associations between ambient air pollution and biomarkers of endothelial cell activation. The Framingham Heart Study utilized standardized protocols for physical examinations and biomarkers assessments. We adjusted for a robust set of potential confounders, including demographic characteristics, lifestyle, individual- and area-level socioeconomic position, meteorology, and time in our analyses. Additionally, levels of air pollutants and biomarkers were measured separately so that any measurement error was likely non-differential. Last, because the differences in air pollution levels between participants were mostly determined by the dates of participants’ examination visits and the participants could schedule their examination visit in advance and spread over the year, the possibility of strong residual confounding by examination date is unlikely.

5. Conclusions

Our findings do not support the hypothesis that short-term exposure to ambient air pollution is associated with higher levels of circulating biomarkers of endothelial cell activation among generally healthy adults. Rather, in this region with relatively low levels of ambient air pollution, we found negative associations of several air pollutants with these biomarkers, including P-selectin, MCP-1, and osteoprotegerin. Furthermore, among participants with diabetes, the associations for ICAM-1 appeared to be positive. Future longitudinal studies with large sample sizes and larger variations in air pollution levels are needed to confirm or refute our findings.

Acknowledgements

We thank the participants of the Framingham Offspring and Third Generation cohorts.

Funding sources

This publication was made possible by U.S. Environmental Protection Agency (USEPA) Grant (RD-835872-01) through the Harvard University USEPA sponsored Air, Climate & Environment (ACE) Centre. The contents of the study are solely the responsibility of the grantee and do not necessarily represent the official views of the USEPA. Further, USEPA does not endorse the purchase of any commercial products or services mentioned in the publication. Funding of the inflammation markers was through 1R01 HL64753, R01 HL076784, 1R01 AG028321, 1R01 HL128914, 2R01 HL92577, and 1P50 HL120163. Funding of the Framingham Heart Study was via HHSN2682015000011 and N01-HC-25195. This work was also supported by the National Institute of Environmental Health Sciences (NIEHS) Grants P01 ES09825 and P30 ES000002, and the National Institute of General Medical Sciences Grant 1P20GM109036-01A1.
825–832.

Splanisky, G.L., Corey, D., Yang, Q., Atwood, I.D., Capples, I.A., Benjamin, E.J.,
R.S., Wolf, P.A., Levy, D., 2007. The third generation cohort of the national heart,
lung, and blood institute’s framingham heart study: design, recruitment, and initial

Stenemo, M., Nowak, C., Byberg, L., Sundstrom, J., Giedraitis, V., Lind, L., Ingelsson, E.,
Fall, T., Arnlow, J., 2018. Circulating proteins as predictors of incident heart failure

Stokes, K.Y., Granger, D.N., 2012. Platelets: a critical link between inflammation and
microvascular dysfunction. J. Physiol. 590, 1023–1034.

2003a. New markers of inflammation and endothelial cell activation: part i.

Biomarkers of vascular disease linking inflammation to endothelial activation: part ii.
Circulation 108, 2041–2048.

Szulc, P., Chapurlat, R., Hofbauer, L.C., 2017. Prediction of fractures and major cardio-
vascular events in men using serum osteoprotegerin levels: the prospective strambo

Van Campenhout, A., Golledge, J., 2009. Osteoprotegerin, vascular calcification and

Cardiol. 55, 2049–2061.

Ambient pollutants, polymorphisms associated with microRNA processing and adhe-

Hao, Y., Guo, X., 2012. Chemical constituents of ambient particulate air pollution and
biomarkers of inflammation, coagulation and homocysteine in healthy adults: a
prospective panel study. Part Fibre Toxicol. 9, 49.

Wu, S., Yang, D., Pan, L., Shan, J., Li, H., Wei, H., Wang, B., Huang, J., Baccarelli, A.A.,
Shima, M., Deng, F., Guo, X., 2016. Chemical constituents and sources of ambient
particulate air pollution and biomarkers of endothelial function in a panel of healthy