Association of Short-Term Exposure to Air Pollution with Mortality in Older Adults

Qian Di, M.S.1, Lingzhen Dai, Sc.D.1,*, Yun Wang, Ph.D.2, Antonella Zanobetti, Ph.D.1, Christine Choirat, Ph.D.2, Joel D. Schwartz, Ph.D.1, and Francesca Dominici, Ph.D.2
1Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, USA
2Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston MA, USA

Abstract

Importance—The Environmental Protection Agency (EPA) is required to re-examine its National Ambient Air Quality Standards (NAAQS) every 5 years, but evidence of mortality risk is lacking at air pollution levels below the current daily NAAQS, in unmonitored areas and for sensitive subgroups.

Objective—To estimate the association between short-term exposures to ambient PM$_{2.5}$ and ozone and at levels below the current daily NAAQS and mortality in the continental US.

Design, Setting, and Participants—Case-crossover design and conditional logistic regression to estimate the association between short-term exposures to PM$_{2.5}$ and ozone (mean of daily exposure on the same day of death and one day prior) and mortality in 2-pollutant models. The study included the entire Medicare population from January 1, 2000 to December 31, 2012 residing in 39,182 zip codes.

Corresponding authors: Francesca Dominici, fdominic@hsph.harvard.edu, Professor of Biostatistics, Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115; Joel D. Schwartz, jschwrtz@hsph.harvard.edu, Professor of Environmental Epidemiology, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Landmark Center West 404H, Boston, MA 02215.

*Two authors contributed equally to this study.

Author Contributions:
Qian Di, M.S., had full access to the data in the study and was responsible for the integrity of the data and the accuracy of the data analysis.
Analysis and interpretation of data: Di and Dai
Acquisition and preparation of data: Wang, Choirat, and Dominici
Drafting of the manuscript: Di, Dai, Schwartz, and Dominici
Critical revision of the manuscript: Di, Dai, Schwartz, and Dominici
Statistical analysis: Di, Dai, Zanobetti, Schwartz, and Dominici
Administrative and technical support: Wang, Zanobetti, Choirat, Schwartz, and Dominici

Conflict of Interest Disclosures:
Dr. Joel Schwartz received funding from the US Department of Justice. The authors have completed ICMJE forms and do not have any additional potential conflicts of interest.

Non-author Contributions:
We thank Stacey C. Tobin, Ph.D., and Kathy L. Brenner, M.A.T., from Harvard T.H. Chan School of Public Health, for editorial assistance on the manuscript; Sarah L. Duncan, M.Div., and William J. Horka, B.S., at the Institute for Quantitative Social Science, Harvard University, for their support with the Research Computing Environment; and Isia Zahn, M.S., at the Institute for Quantitative Social Science, Harvard University, for programming support. Stacey C. Tobin, Ph.D., received compensation for editorial assistance.
Exposures—Daily PM$_{2.5}$ and ozone levels in a 1 km $\times$ 1 km grid were estimated using published and validated air pollution prediction models based on land use, chemical transport modeling, and satellite remote sensing data. From these gridded exposures, daily exposures were calculated for every zip code in the US. Warm-season ozone was defined as ozone levels for the months April to September of each year.

Main Outcome and Measure—All-cause mortality in the entire Medicare population from 2000 to 2012.

Results—During the study period, there were 22,433,862 million case days and 76,143,209 control days. Of all case and control days, 93.6% had PM$_{2.5}$ levels below 25 µg/m$^3$, during which 95% of deaths occurred (21,353,817 of 22,433,862), and 91.1% of days had ozone levels below 60 ppb, during which 93.4% of deaths occurred (20,955,387 of 22,433,862). The baseline daily mortality rate was 137.33 and 129.44 (per 1 million persons at risk per day) for the entire year and for the warm season, respectively. Each short-term increase of 10 µg/m$^3$ in PM$_{2.5}$ (adjusted by ozone) and 10 ppb (parts-per-billion, $10^{-9}$) in warm-season ozone (adjusted by PM$_{2.5}$) were statistically significantly associated with a relative increase of 1.05% (95% confidence interval [CI]: 0.95%, 1.15%) and 0.51% (95% CI: 0.41%, 0.61%) in daily mortality rate, respectively. Absolute risk differences in daily mortality rate were 1.42 (95% CI: 1.29, 1.56) and 0.66 (95% CI: 0.53, 0.78) per 1 million persons at risk per day. There was no evidence of a threshold in the exposure-response relationship.

Conclusions and Relevance—In the US Medicare population from 2000-2012, short-term exposures to PM$_{2.5}$ and warm-season ozone were significantly associated with increased risk of mortality. This risk occurred at levels below current national air quality standards, suggesting that these standards may need to be reevaluated.

Introduction

In the US, the Clean Air Act (42 U.S.C. §7401 et seq. [1970]) requires a review of National Ambient Air Quality Standards (NAAQS) for fine particulate matter (PM$_{2.5}$) and ozone every 5 years.$^1$ In 2012, the annual and 24-hour NAAQS for PM$_{2.5}$ were set to 12 µg/m$^3$ and 35 µg/m$^3$, respectively. With no annual standard for ozone, the 8-hour NAAQS for ozone was set to 70 ppb. Currently, the review of these standards is ongoing with public comments expected in the Fall of 2017.$^2$

Several studies have provided evidence that short-term exposures to PM$_{2.5}$ and ozone were associated with mortality,$^3$–$^7$ but these studies primarily included large and well-monitored metropolitan areas. While the US Environmental Protection Agency (EPA) is considering more stringent NAAQS, evidence is needed to clarify the association between mortality risk and exposure levels below the daily NAAQS, and in rural and unmonitored areas.

The Clean Air Act also requires the US EPA to set standards to protect “sensitive subgroups.” To estimate the health risk of short-term exposure to air pollution for specific subgroups (e.g., underrepresented minorities and those with low socioeconomic status, such as persons eligible for Medicaid), a large population is necessary to achieve maximum accuracy and adequate statistical power.
A case-crossover study was conducted to examine all deaths of Medicare participants in the continental US from 2000 throughout 2012 and estimate the mortality risk associated with short-term exposures to PM$_{2.5}$ and ozone in the general population as well as in subgroups. The study was designed to estimate the association between daily mortality and air pollution at levels below current daily NAAQS to evaluate the adequacy of the current air quality standards for PM$_{2.5}$ and ozone.

**Methods**

This study was approved by the IRB at the Harvard T.H. Chan School of Public Health. As a study of previously collected administrative data, it was exempt from informed consent requirements.

**Study population**

Using claims data from the Centers for Medicare and Medicaid Services, all deaths among all Medicare beneficiaries were identified during the period 2000 to 2012, providing enough power to analyze the risk of mortality associated with PM$_{2.5}$ and ozone concentrations much lower than the current standards. For each beneficiary, information was extracted on the date of death, age, sex, race, ethnicity, zip code of residence, and eligibility for Medicaid (a proxy for low income), to assess the associations of mortality with PM$_{2.5}$ and ozone concentrations in potentially vulnerable subgroups Self-reported information on race and ethnicity was obtained from Medicare beneficiary files.

**Outcome**

The study outcome was all-cause mortality. Individuals with a verified date of death between January 1, 2000 and December 31, 2012 were included. Individuals with an unverified date of death, or still living after December 31, 2012, were excluded.

**Study design**

We estimated the association between short-term exposure to PM$_{2.5}$ (adjusted by ozone) and short-term exposure to ozone (adjusted by PM$_{2.5}$), and all-cause mortality using a case-crossover design. Specifically, “case day” was defined as the date of death. For the same person, we compared daily air pollution exposure on the case day vs daily air pollution exposure on “control days.” Control days were chosen (1) on the same day of week as the case day to control for potential confounding effect by day of week; (2) before and after the case day (bidirectional sampling) to control for time trend; and (3) only in the same month as the case day to control for seasonal and sub-seasonal patterns. Individual-level covariates and zip code-level covariates that did not vary day-to-day (e.g., age, sex, race, socioeconomic status, smoking, and other behavioral risk factors) were not considered to be confounders as they remain constant when comparing case days vs control days.

**Environmental data**

Daily ambient levels of PM$_{2.5}$ and ozone were estimated from published and validated air pollution prediction models. Combining monitoring data from EPA, satellite-based measurements, and other data sets, neural networks were used to predict 24-hour PM$_{2.5}$ and
8-hour maximum ozone concentrations at each 1 km × 1 km grid in the continental US, including locations with no monitoring sites. Cross-validation indicated good agreement between predicted values and monitoring values ($R^2 = 0.84$ for PM$_{2.5}$, $R^2 = 0.76$ for ozone) and at low concentrations ($R^2 = 0.85$ when constraining to 24-hour PM$_{2.5} < 25$ μg/m$^3$; $R^2 = 0.75$ when constraining to daily 8-hour maximum ozone <60 ppb). Details have been published elsewhere.$^{12,13}$ Warm season is defined to be from April 1 to September 30, which is the specific time window to examine the association between ozone and mortality. Meteorological variables including air and dew point temperatures were retrieved from North American Regional Reanalysis data and estimated daily mean values were determined for each 32 km × 32 km grid in the continental US.$^{14}$

For each case day (date of death) and its control days, the daily 24-hour PM$_{2.5}$, 8-hour maximum ozone, and daily air and dew point temperatures were assigned based on zip code of residence of the individual (Section 1, Supplementary Material). Since we estimated air pollution levels everywhere in the continental US, the number of zip codes included in this study was 39,182, resulting in a 33% increase compared to the number of zip codes with a centroid <50 km from a monitor ($N = 26,115$).

**Statistical analysis**

The relative risk (RR) of all-cause mortality associated with short-term exposures to PM$_{2.5}$ (adjusted by ozone) and warm-season ozone (adjusted by PM$_{2.5}$) was estimated by fitting a conditional logistic regression to all pairs of case days and matched control days.$^8$ The regression model included both pollutants as main effects, and natural splines of air and dew point temperatures with 3 degrees of freedom to control for potential residual confounding by weather. For each case day, daily exposure to air pollution was defined as the mean of the same day of death (lag 0 day) and one day prior (lag 1 day), denoted as lag 01 day.$^4,15,16$ The absolute risk difference (ARD) of all-cause mortality associated with air pollution was defined as $\text{ARD} = \alpha \times (\text{RR}-1)/\text{RR}$, where RR denotes the relative risk and $\alpha$ denotes the baseline daily mortality rate (Section 2, Supplementary Material).

The robustness of the analysis results was assessed with respect to (1) choosing the degrees of freedom used for the confounding adjustment for temperature, (2) using lag 01 day exposure as the exposure metric, (3) the definition of warm season, and (4) using only air pollution measurements from the nearest EPA monitoring sites. Splines on meteorological variables with 6 and 9 degrees of freedom yielded results with a difference of less than 5% of the standard error (Figure S1). The main analysis, which used the lag 01 day exposure, yielded the lowest values of the Akaike Information Criteria values, indicating better fit to the data (Table S1). Different definitions of warm season yielded similar risk estimates (Section 5, Supplementary Material), and using exposure measurements from the nearest monitors resulted in attenuated, but still significant, risk estimates (Table 2).

The subgroup analyses were conducted by sex (male and female), race (White, non-White, and others), age (≤69, 70 to 74, 75 to 84, and ≥85 years), eligibility for Medicaid, and population density (quartiles). We fitted separate conditional logistic regressions to the data for each subgroup and obtained subgroup-specific estimates of RR and ARD. We implemented a two-sample test for assessing statistically significant differences in the
estimated RR and ARD between categories within each subgroup (e.g., female vs. male),

based on the point estimate and standard error (se):

\[ Z = \frac{RR_{\text{male}} - RR_{\text{female}}}{\sqrt{se(\text{RR}_{\text{male}})^2 + se(\text{RR}_{\text{female}})^2}} \]

(Section 3, Supplementary Material).

The goal was to estimate mortality rate increases (both RR and ARD) at air pollution levels well below the current daily NAAQS. The analysis was restricted to days with daily air pollution concentrations below 25 μg/m³ for PM₂.₅ and 60 ppb for ozone. We chose 25 μg/m³ and 60 ppb instead of the current daily NAAQS (35 μg/m³ for daily PM₂.₅ and 70 ppb for 8-hour maximum ozone) because levels of PM₂.₅ and ozone on most of the days included in the analysis were already below the current safety standards.

Exposure-response curves were estimated between PM₂.₅ or ozone and mortality by replacing linear terms for the 2 pollutants with penalized splines for both PM₂.₅ and ozone.

All analyses were performed in R software, version 3.3.2. Computations were run on (1) the Odyssey cluster supported by the FAS Division of Science, Research Computing Group at Harvard University; and (2) the Research Computing Environment supported by the Institute for Quantitative Social Science in the Faculty of Arts and Sciences at Harvard University.

**Results**

During the study period, there were more than 22 million case days (deaths) and more than 76 million control days (Table 1). Of all case and control days, 93.6% had PM₂.₅ levels below 25 μg/m³, during which 95% of deaths occurred (21,353,817 out of 22,433,862), and 91.1% of days had ozone levels below 60 ppb, during which 93.4% of deaths occurred (20,955,387 out of 22,433,862). The baseline daily mortality rate was 137.33 and 129.44 (per 1 million persons at risk per day, [per 1M per day]) for the entire year and for the warm season, respectively. The mean time between case and control days was 12.55 days (range 7-28 days), with minimal differences in air and dew point temperatures between case and control days (0.003°C and 0.01°C, respectively). During the study period, the mean concentrations of PM₂.₅ and ozone were 11.6 μg/m³ and 37.8 ppb, respectively. Figure 1 shows the daily PM₂.₅ and ozone time series by state.

Each 10 μg/m³ and 10 ppb increase in the lag 01 day exposure for PM₂.₅ and warm-season ozone was associated with an increase of 1.05% (95% confidence interval [CI]: 0.95%, 1.15%) and 0.51% (0.41%, 0.61%) in the daily mortality rate. The ARD was 1.42 (95% CI: 1.29, 1.56) and 0.66 (95% CI: 0.53, 0.78) per 1M per day. These associations remained significant when examining days below 25 μg/m³ for PM₂.₅ and below 60 ppb for ozone, with larger effect size estimates for both PM₂.₅ and ozone (RR: 1.61% [95% CI: 1.48%, 1.74%] and 0.58% [95% CI: 0.46%, 0.70%]; ARD: 2.17 [95% CI: 2.00, 2.34] and 0.74 [95% CI: 0.59, 0.90] per 1M per day) (Table 2). PM₂.₅ was associated with higher mortality rate in some subgroups, including Medicaid-eligible individuals (RR: 1.49% [95% CI: 1.29%, 1.70%]; ARD: 3.59 [95% CI: 3.11, 4.08] per 1M per day, interaction: p<0.001), individuals above 70 years of age (e.g., for ≥85 years, RR: 1.38% [95% CI: 1.23%, 1.54%]; ARD: 5.35 [95% CI: 4.75, 5.95] per 1M per day, interaction: p<0.001), and females (RR: 1.20% [95%
CI: 1.07%, 1.33%]; ARD: 1.56 [95% CI: 1.39, 1.72] per 1M per day, interaction: p=0.019) (Figure 2). The effect estimates for PM$_{2.5}$ increased with age. The effect estimate for Blacks was higher than that for Whites (p=0.001, Figure S2). For ozone, similar patterns were observed, but with less contrast between groups. No significant differences were found in the short-term associations between air pollution exposure (PM$_{2.5}$ and ozone) and mortality across areas with different population density levels (Figure 2).

Figure 3 shows the estimated exposure-response curves for PM$_{2.5}$ and ozone. The slope was steeper at PM$_{2.5}$ levels below 25 μg/m$^3$ (p<0.001), consistent with the low-exposure analysis (Table 2). Both PM$_{2.5}$ and ozone exposure-responses were almost linear, with no indication of a mortality risk threshold at very low concentrations.

**Discussion**

This large case-crossover study of all Medicare deaths in the continental US found that 10 μg/m$^3$ daily increase in PM$_{2.5}$ and 10 ppb daily increase in warm-season ozone exposures are associated with a statistically significant increase of 1.42 and 0.66 deaths per 1 million persons at risk per day, respectively. The risk of mortality remained statistically significant when restricting the analysis to days with PM$_{2.5}$ and ozone levels much lower than the current daily NAAQS. This study included individuals living in smaller cities, towns, and rural areas that were unmonitored and thus excluded from previous time series studies. There were no significant differences in the mortality risk associated with air pollution among individuals living in urban versus rural areas. Taken together, these results provide evidence that short-term exposures to PM$_{2.5}$ and ozone, even at levels much lower than the current daily standards, are associated with increased mortality, particularly for susceptible populations.

The Clean Air Act requires the administrator of the US EPA to set NAAQS at levels that provide “protection for at-risk populations, with an adequate margin of safety.” In this study, Medicaid-eligible individuals, females, and the elderly had higher mortality rate increases associated with PM$_{2.5}$ than other groups. Previous studies have found similar results in some subgroups. Poverty, unhealthy lifestyle, poor access to healthcare, and other factors may make some subgroups more vulnerable to air pollution. The exact mechanism is worth exploring in future studies.

The current daily NAAQS for daily PM$_{2.5}$ is 35 μg/m$^3$. When restricting the analysis to daily PM$_{2.5}$ levels below 25 μg/m$^3$, the association between short-term PM$_{2.5}$ exposure and mortality remained, but was elevated. The current daily NAAQS for ozone is 70 ppb; when restricting the analysis to daily warm-season ozone concentrations below 60 ppb, the effect size also increased slightly. The exposure-response curves revealed a similar pattern. These results indicate that air pollution is associated with an increase in daily mortality rates, even at levels well below the current standards.

The exposure-response relationship between PM$_{2.5}$ exposure and mortality was consistent with findings of previous studies. One study combined exposure-response curves from 22 European cities and reported an almost linear relationship between PM$_{2.5}$ and mortality.
Another multi-city study reported a linear relationship down to 2 μg/m$^3$ PM$_{2.5}$.\textsuperscript{22} The present study found a similarly linear exposure-response relationship below 15 μg/m$^3$ PM$_{2.5}$ and a less steep slope above this level. 

For ozone, the linear exposure-response curve with no threshold described in this study is consistent with earlier research. An almost linear exposure-response curve for ozone was previously reported with no threshold or a threshold at very low concentrations.\textsuperscript{23} A study from the Netherlands also concluded that if an ozone threshold exists, it does so at very low levels.\textsuperscript{24}

Findings from this study are also consistent with the literature regarding the observed effect sizes of both PM$_{2.5}$\textsuperscript{4,7,15,25–27} and ozone.\textsuperscript{6,19,28,29} This study further demonstrates that in more recent years, during which air pollution concentrations have fallen, statistically significant associations between mortality and exposures to PM$_{2.5}$ and ozone persisted.

The association of mortality and PM$_{2.5}$ exposure is supported by a large number of published experimental studies in animals\textsuperscript{30–32} and in humans exposed to traffic air pollution,\textsuperscript{33,34} diesel particles,\textsuperscript{35} and unfiltered urban air.\textsuperscript{36} Similarly, a review of toxicological studies and a recent panel study found that ozone exposure was associated with multiple adverse health outcomes.\textsuperscript{37,38}

This study has several strengths. First, to the best of our knowledge, this is the largest analysis of daily air pollution exposure and mortality to date, with approximately 4 times the number of deaths included in a previous large study.\textsuperscript{4} Second, this study assessed daily exposures using air pollution prediction models that provide accurate estimates of daily levels PM$_{2.5}$ and ozone for most of the US, including previously unmonitored areas. An analysis that relied only on exposure data from monitoring stations was found to result in a downward bias in estimates (Table 2). Third, the inclusion of more than 22 million deaths from 2000 to 2012 from the entire Medicare population provided large statistical power to detect differences in mortality rates in potentially vulnerable populations and to estimate mortality rates at very low PM$_{2.5}$ and ozone concentrations. Fourth, this study estimated the air pollution–mortality association well below the current daily NAAQS and in unmonitored areas, and did not identify significant differences in the mortality rate increase between urban and rural areas. Fifth, this study used a case-crossover design that individually matched potential confounding factors by month, year, and other time-invariant variables and controlled for time-varying patterns, as demonstrated by the minimal differences in meteorological variables between case and control days.

This study also has several limitations. First, the case-crossover design does not allow estimation of mortality rate increase associated with long-term exposure to air pollution. Long-term risks in the same study population have been estimated elsewhere.\textsuperscript{39} Second, because this study used residential zip code to ascertain exposure level rather than exact home address or place of death, some measurement error is expected. Third, the Medicare population primarily consists of individuals older than 65 years, which limits the generalizability of findings to younger populations. However, because more than two-thirds of deaths in the US occur in people older than 65 years of age, and air pollution-related
health risk rises with age, the Medicare population in this study includes most cases of air pollution-induced mortality. Fourth, Medicare files do not report cause-specific mortality. Fifth, the most recent data used in this study are nearly 5 years old, and it is uncertain whether exposures and outcomes would be the same with more current data.

Conclusions

In the US Medicare population from 2000-2012, short-term exposures to PM$_{2.5}$ and warm-season ozone were significantly associated with increased risk of mortality. This risk occurred at levels below current national air quality standards, suggesting that these standards may need to be reevaluated. (Word Count: 2824)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Funding/Sponsor:

This study was supported by NIH grants R01 ES024332-01A1, ES-000002, ES024012, R01ES026217, 4953-RFA14-3/16-4; HEI grant 4953-RFA14-3/16-4, and USEPA grants 83587201-0 and RD-83479801.

Role of the Funder/Sponsor:

The funding organizations and sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. The contents are solely the responsibility of the grantee and do not necessarily represent the official views of the funding agencies. Further, the funding agencies do not endorse the purchase of any commercial products or services related to this publication.

References


JAMA. Author manuscript; available in PMC 2018 January 24.


33. Hemmingsen JG, Rissler J, Lykkesfeldt J, et al. Controlled exposure to particulate matter from urban street air is associated with decreased vasodilation and heart rate variability in overweight and older adults. Part Fibre Toxicol. 2015; 12:6. [PubMed: 25890359]


Key Points

Question
What is the association between short-term exposure to air pollution below current air quality standards and all-cause mortality?

Finding
In a case-crossover study of more than 22 million deaths, each 10 μg/m³ daily increase in PM$_{2.5}$ and 10 ppb daily increase in warm-season ozone exposures were associated with a statistically significant increase of 1.42 and 0.66 deaths per 1 million persons at risk per day, respectively.

Meaning
Day-to-day changes in PM$_{2.5}$ and ozone exposures were significantly associated with higher risk of all-cause mortality at levels below current air quality standards, suggesting that those standards may need to be reevaluated.
Figure 1. Daily Air Pollution Concentrations in the Continental United States, 2000-2012

Daily mean of PM$_{2.5}$ (left panel) and 8-hour maximum ozone (right panel) concentrations were calculated and plotted by state. The time-series plots at the bottom indicate the national daily mean values across all locations. Red dashed lines indicate the daily NAAQS for PM$_{2.5}$ (35 μg/m$^3$) and ozone (70 ppb). Boxplots show the distribution of daily PM$_{2.5}$ and ozone levels for each state. The line across the box, upper hinge, and lower hinge represent the median value, 75th percentile (Q3), and 25th percentile (Q1), respectively. The upper whisker is located at the smaller of the maximal value and Q3+1.5*interquartile (IQR); the lower whisker is located at the larger of the minimal value and Q1 – 1.5*IQR. Any values that lie beyond upper and lower whiskers are outliers.
Figure 2. Absolute Risk Difference and Relative Risk of Daily Mortality Associated with 10 μg/m³ Increase in PM2.5 and 10 ppb Increase in Ozone

As for the main analysis, subgroup analyses used a 2-pollutant analysis (with both PM$_{2.5}$ and ozone), based on the mean of daily exposure on the same day of death and one day prior (lag 01 day) as the exposure metric for PM$_{2.5}$ and ozone, and controlled for natural splines of air and dew point temperatures (each with 3 degrees of freedom). Vertical lines indicate effects for the entire study population. Subgroup analyses were conducted for each subgroup (e.g., male or female, White or non-White, Medicare-eligible or Medicare-ineligible, age groups, quartiles of population density). For the main analysis and each subgroup, we ran...
conditional logistic regressions to obtain RR, and calculated ARD based on baseline mortality rates (See Section 2, supplementary material). For ozone, analyses were restricted to the warm season (April to September). Numbers in the figure represent point estimates, 95% confidence intervals, and p-values for effect modifications. “Ref” indicates reference group when assessing effect modification; asterisks indicate a statistically significant effect estimate (at 5% level) compared with the reference group.
Figure 3. Estimated Exposure-response Curves for Short-term Exposures to PM2.5 and Ozone

A 2-pollutant analysis with separate penalized splines on PM$_{2.5}$ and ozone was conducted to assess the percentage increase in daily mortality at various pollution levels. Dashed lines indicate 95% confidence intervals. The mean of daily exposure on the same day of death and one day prior (lag 01 day) was used as metrics of exposure to PM$_{2.5}$ and ozone. Analysis for ozone was restricted to the warm season (April to September).
Table 1
Baseline Characteristics of Study Population (2000-2012)

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Case days (No.)</td>
<td>22,433,862</td>
</tr>
<tr>
<td>Control days (No.)</td>
<td>76,143,209</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Among All Cases</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at death</td>
<td></td>
</tr>
<tr>
<td>&lt;69 years</td>
<td>10.38%</td>
</tr>
<tr>
<td>70 to 74 years</td>
<td>13.37%</td>
</tr>
<tr>
<td>75 to 84 years</td>
<td>38.48%</td>
</tr>
<tr>
<td>≥85 years</td>
<td>37.78%</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>44.73%</td>
</tr>
<tr>
<td>Female</td>
<td>55.27%</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>87.34%</td>
</tr>
<tr>
<td>Black</td>
<td>8.87%</td>
</tr>
<tr>
<td>Asian</td>
<td>1.03%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1.51%</td>
</tr>
<tr>
<td>Native American</td>
<td>0.31%</td>
</tr>
<tr>
<td>Medicaid eligibility</td>
<td></td>
</tr>
<tr>
<td>Ineligible</td>
<td>77.36%</td>
</tr>
<tr>
<td>Eligible</td>
<td>22.64%</td>
</tr>
</tbody>
</table>
### Table 2

Relative Risk and Absolute Risk Difference of Daily Mortality Associated with Each 10 μg/m$^3$ Increase in PM$_{2.5}$ and Each 10 ppb Increase in Ozone

<table>
<thead>
<tr>
<th>Air Pollutant</th>
<th>Relative Risk (Percentage Change)</th>
<th>Absolute Risk Difference in Daily Mortality Rates (No. Per 1 Million Persons at Risk Per Day$^d$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM$_{2.5}$</td>
<td>Ozone$^b$</td>
</tr>
<tr>
<td>Main Analysis$^c$</td>
<td>1.05% (0.95%, 1.15%)</td>
<td>0.51% (0.41%, 0.61%)</td>
</tr>
<tr>
<td></td>
<td>1.42 (1.29, 1.56)</td>
<td>0.66 (0.53, 0.78)</td>
</tr>
<tr>
<td>Low-exposure Analysis$^d$</td>
<td>1.61% (1.48%, 1.74%)</td>
<td>0.58% (0.46%, 0.70%)</td>
</tr>
<tr>
<td></td>
<td>2.17 (2.00, 2.34)</td>
<td>0.74 (0.59, 0.90)</td>
</tr>
<tr>
<td>Single-pollutant Analysis$^e$</td>
<td>1.18% (1.09%, 1.28%)</td>
<td>0.55% (0.48%, 0.62%)</td>
</tr>
<tr>
<td></td>
<td>1.61 (1.48, 1.73)</td>
<td>0.71 (0.62, 0.79)</td>
</tr>
<tr>
<td>Nearest Monitors Analysis$^f$</td>
<td>0.83% (0.73%, 0.93%)</td>
<td>0.35% (0.28%, 0.41%)</td>
</tr>
<tr>
<td></td>
<td>1.13 (0.99, 1.26)</td>
<td>0.45 (0.37, 0.53)</td>
</tr>
</tbody>
</table>

$^a$ The daily baseline mortality rate was 137.33 per 1 million persons at risk per day; the warm-season daily baseline mortality rate was 129.44 per 1 million persons at risk per day.

$^b$ Ozone analyses included days from the warm season only (April 1 to September 30).

$^c$ The main analysis used mean of daily exposure on the same day of death and one day prior (lag 01 day) as the exposure metric for both PM$_{2.5}$ and ozone, and controlled for natural splines of air and dew point temperatures with 3 degrees of freedom. The main analysis considered the 2 pollutants jointly included into the regression model and estimated the percentage increase in the daily mortality rate associated with a 10 μg/m$^3$ increase in PM$_{2.5}$ exposure adjusted for ozone and the percentage increase in daily mortality rate associated with a 10 ppb increase in warm-season ozone exposure adjusted for PM$_{2.5}$.

$^d$ The low-exposure analysis had the same model specifications as the 2-pollutant analysis and was constrained for days when PM$_{2.5}$ was below 25 μg/m$^3$ or ozone below 60 ppb.

$^e$ The single-pollutant analysis estimated the percentage increase in the daily mortality rate associated with a 10 μg/m$^3$ increase in PM$_{2.5}$ exposure without adjusting for ozone and the percentage increase in the daily mortality rate associated with a 10 ppb increase in ozone exposure without adjusting for PM$_{2.5}$.

$^f$ PM$_{2.5}$ and ozone monitoring data were retrieved from the US EPA Air Quality System (AQS). AQS provides the daily mean of PM$_{2.5}$ and daily 8-hour maximum ozone levels at each monitoring site. Daily ozone concentrations were averaged from April 1 to September 30. Individuals were assigned to the PM$_{2.5}$ and ozone levels from the nearest monitor site within 50 kilometers. Those living 50 kilometers from any monitoring site were excluded.