Identification and Characterization of a cDNA Encoding Cytochrome P450 3A from the Fresh Water Teleost Medaka (Oryzias latipes)

Seth W. Kullman,1 Jonathan T. Hamm, and David E. Hinton
School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology and University of California Toxic Substance Research and Training Program, Lead Campus in Ecotoxicology, University of California—Davis, Davis, California 95616-8732

Received February 3, 2000, and in revised form April 19, 2000

A new member of the CYP3A gene family has been cloned from the teleost fish medaka (Oryzias latipes) by reverse-transcriptase polymerase chain reaction (RT-PCR). Degenerate primers homologous to highly conserved regions of known CYP3A sequences were used for initial RT-PCRs. Individual PCR products were cloned, sequenced, and identified as those belonging to the cytochrome P450 superfamily based on amino acid sequence similarity and the presence of the highly conserved heme-binding region. PCR products were subsequently used as probes to screen a complementary DNA library. A full-length cDNA clone was identified containing a 1758-base-pair (bp) insert with an open reading frame encoding a single peptide of 500 amino acids. Comparisons of the deduced amino acid sequence to other known cytochrome P450 sequences indicate that this gene product is most similar to the CYP3A gene family and has been designated as CYP3A38 by the cytochrome P450 nomenclature committee. Northern blot analysis identified two abundant CYP3A related transcripts in liver of both male and female adults and demonstrated quantitative differences in abundance according to gender. Similarly, Western blot analysis demonstrated the presence of two abundant cytochrome P450 related proteins in liver of both male and female adults. These results suggests that O. latipes contains multiple forms of CYP3A. Heterologous expression of CYP3A38 cDNA in HEK 293 cells produced a single protein that was reactive with anti-scup P450A (CYP3A) polyclonal antibody. Microsomes of HEK 293 cells expressing recombinant CYP3A38 protein actively catalyzed the hydroxylation of testosterone.

1 To whom correspondence should be addressed. Fax: (530) 752-9692. E-mail: swkullman@ucdavis.edu.
ing zebrafish (5, 6). Disruption of reproduction, development, and early life-stage mortality are among endpoints observed following exposure of adults and larvae to select xenobiotics (7–9). As development of the medaka model continues, a thorough understanding of the biochemical and molecular actions of environmental pollutants in this species is paramount. To this effect, we have become increasingly interested in examining xenobiotic metabolism and associated cytochrome P450 systems in medaka.

Cytochrome P450s, a large and ubiquitous superfamily of heme proteins, catalyze the oxidative bio-transformation of structurally diverse lipophilic compounds including drugs, xenobiotics, and endogenous substances such as fatty acids and steroids. Currently, 12 subfamilies of cytochrome P450 have been identified in fish species including 1(A), 2(B, E, K, M, N, P), 3(A), 4(T), 11, 17, and 19 (10). Their catalytic activities, immunological cross-reactivity and nucleic acid sequences indicate that many of the cytochrome P450 enzymes found in fish species are similar to their mammalian homologs including those responsible for steroid biosynthesis and metabolism.

Cytochrome P450 catalyzed steroid hydroxylation reactions are key to numerous important metabolic pathways including biosynthesis and metabolism of cholesterol, bile acids, vitamin D, prostaglandins, and all major classes of steroid hormones (11). It has been demonstrated that steroid hormones are metabolized by distinct cytochrome P450 enzymes with a high degree of regio- and stereoselectivity (12). Determination of specific metabolic activities for individual cytochrome P450s has been established by various methods including immunoinhibition, chemical inhibition, isozyme specific substrates and activity studies using purified enzyme. More recently, expression of recombinant enzyme and reconstitution systems have enabled the identification of exact metabolic profiles for distinct cytochrome P450 genes (13–16). Through these studies it has been observed that cytochrome P450 3A (CYP3A) gene family members are major contributors to steroid hydroxylation reactions in hepatic microsomes. 6β Hydroxylation of testosterone, progesterone, and androstenedione has been identified as the major catalytic activity of most CYP3A enzymes. To date, the CYP3A subfamily consists of over 43 genes identified from mammalian and nonmammalian species. This subfamily shows a high degree of structural similarity; however, assignment of orthologous sequences has been difficult. Thus all CYP3A genes have been grouped as one subfamily, CYP3A1-43 (17).

CYP3A-like proteins have been purified from teleost species including P450A from scup (Stenotomus chrysops), P450b from Atlantic cod (Gadus morhua), and P450con/LMC5 from trout (Oncorhyncus mykiss) (18–21). The catalytic activities of purified enzyme, immunologic cross-reactivity and inhibition studies strongly suggest that these cytochrome P450 proteins are similar to CYP3A enzymes identified from mammalian species and are likely members of the CYP3A subfamily. While CYP3A-like proteins have been observed in various fish species by immunochromat detection, only one full-length gene sequence and one partial gene sequence have been identified in teleost fish (22). Additionally, to date no information regarding catalytic activities of cloned teleost CYP3A sequences has been demonstrated.

In this study we describe the identification and initial characterization of a new member of the CYP3A gene subfamily from the teleost O. latipes. Expression analysis of this CYP3A gene suggests that multiple isozymes are present in liver of adult males and females. Furthermore, we report the catalytic activity of CYP3A38 in heterologous expression studies.

MATERIALS AND METHODS

Fish culture and maintenance. Adult medaka were reared at the Aquatics Center (Institute of Ecology), University of California—Davis, as previously described (23). Briefly, eggs were reared under constant aeration in prefiltered reconstituted water according to EPA guidelines (24). Water was maintained at a constant temperature of 25°C and photoperiod was kept at a constant 16 h light and 8 h dark cycle. Fish were fed a purified casein-based diet developed at Bodega Bay Marine Laboratory, University of California, and modified by us for use with medaka (25).

Reverse-transcribed PCR (RT-PCR). Reverse transcription was carried out with total cellular RNA isolated from adult fish liver. Reverse transcriptase reactions containing 5 μg of total RNA, 0.5 μg oligo(dT) primers, and diethyl pyrocarbonate (DEPC)-treated water (total volume 11 μl) were heated to 70°C for 10 min and quickly chilled on ice. After cooling, 4 μl of 5× reaction buffer containing 50 mM Tris-HCl (pH 8.3), 75 mM KCl, 10 mM DTT, 1.5 mM MgCl2, 10 μM of each deoxynucleotide triphosphate (dNTP), 40 U RNasin (Promega, Madison, WI), and 200 units of Superscript reverse transcriptase (Life Technologies Inc., Gaithersburg, MD) were added to make a total volume of 20 μl. Reactions were incubated at 37°C for 1 h and then heated to 95°C for 5 min to inactivate the reverse transcriptase. Polymerase chain reaction (PCR) was used for second-strand synthesis and subsequent cDNA amplifications. PCR reaction (100 μl) contained 2 μl of the RT reaction mixture as a cDNA template, 10 mM Tris–HCl (pH 9.0), 50 mM KCl, 1.5 mM MgCl2, 1% Triton X-100, 10 μM of each deoxynucleotide triphosphate (dNTP) (Amersham Pharmacia Biotech, Piscataway, NJ), 2.5 units of Taq DNA polymerase (Promega), and 100 pmol of both up- and downstream degenerate primers. PCR conditions for cDNA amplification with degenerate primers were denaturation at 96°C for 5 min followed by a cycling of annealing at 50°C for 45 s, extension 72°C for 1.5 min, and denaturation 94°C for 45 s for 40 cycles with a temperature ramp of 1°C/s between the annealing and extension steps. PCR products were analyzed by electrophoresis on 1.5–2.5% agarose gels.
Cloning, cDNA isolation, and sequencing. PCR products excised from the agarose gels were purified using QIAEX DNA extraction kit (Qiagen, Valencia, CA), subcloned into T-tailed pcRTMII vector (Invitrogen, Carlsbad, CA) according to manufacturer’s protocol, and selected by blue-white screening. Confirmation of PCR product incorporation in plasmids was made by restriction analysis. A ZAP II cDNA library to medaka liver (gift from R. J. Van Beneden, University of Maine) was used for the isolation of a cDNA clone encoding CYP3A38. A 956-bp DNA fragment of medaka CYP3A38 was generated by PCR and randomly labeled with [α-32P]dCTP (Amersham Pharmacia Biotech). Approximately 5.0 × 10^4 plaques were screened through three rounds of isolation. Positive clones were recovered according to the manufacturer’s protocol. Clones were subsequently sequenced in both directions using Sp6, T3, T7, or the M13 (-20) primers or by primer walking with sequence-specific oligonucleotides using an ABI prism 377 sequencing unit.

Isolation and analysis of RNA. Total RNA was isolated from adult liver, by the single-step acid guanidinium thiocyanate/phenol method (26). For Northern blot analysis, 1.0 μg total RNA was resolved by electrophoresis through a 1.0% denaturing agarose gel containing 0.66 M formaldehyde and transferred to nylon membranes (Boehringer Mannheim, Indianapolis, IN) by capillary blotting (27). Membranes were prehybridized for 1 h at 68°C in a digoxygenin (DIG) easy-hybridization solution (Boehringer Mannheim). An RNA probe to the CYP3A sequence was labeled using DIG/Genius 4 RNA labeling kit according to the manufacturer’s protocol. Approximately 100 ng of probe/ml of hybridization buffer was added and hybridized for 18 h at 68°C. Membranes were washed twice in 2 × SSC (0.15 mM NaCl, 15 mM sodium citrate, pH 7.0) with 0.1% SDS at room temperature for 5 min and twice under higher stringency in 0.1 × SSC with 0.1% SDS at 68°C for 15 min. Probe target hybrids were detected by enzyme-linked immunooassay using alkaline phosphatase-conjugated anti-digoxigenin antibody (Boehringer Mannheim) and visualized with CDP* chemiluminescent substrate (Boehringer Mannheim).

Extraction and analysis of protein. Total cellular protein was extracted from adult liver by homogenizing 100 mg tissue/ml homogenization buffer containing 0.6 M formic acid and transferred to nylon membranes (Boehringer Mannheim, Indianapolis, IN) by capillary blotting (27). Membranes were prehybridized for 1 h at 68°C in a digoxygenin (DIG) easy-hybridization solution (Boehringer Mannheim). An RNA probe to the CYP3A sequence was labeled using DIG/Genius 4 RNA labeling kit according to the manufacturer’s protocol. Approximately 100 ng of probe/ml of hybridization buffer was added and hybridized for 18 h at 68°C. Membranes were washed twice in 2 × SSC (0.15 mM NaCl, 15 mM sodium citrate, pH 7.0) with 0.1% SDS at room temperature for 5 min and twice under higher stringency in 0.1 × SSC with 0.1% SDS at 68°C for 15 min. Probe target hybrids were detected by enzyme-linked immunooassay using alkaline phosphatase-conjugated anti-digoxigenin antibody (Boehringer Mannheim) and visualized with CDP* chemiluminescent substrate (Boehringer Mannheim).

Heteroduplex expression. For expression of medaka CYP3A38 protein, a full-length cDNA was cloned from a ZAPII, cDNA isolation, and sequencing.

RESULTS

Degenerate primer design. Degenerate primers for RT-PCR were designed based on comparisons of conserved amino acid and nucleic acid sequences of known mammalian CYP3A genes. Alignments of CYP3A sequences were compiled usingPILEUP (Genetics Computer Group) and revealed several specific regions with high degrees of amino acid similarity. Degenerate oligonucleotide primers encoding these conserved regions were designed as shown in Table I. The appropriate nucleotide sequences were chosen according to the degree of amino acid conservation at each position in the alignment. All codon combinations were considered for each amino acid position in the primer design. Inosine was substituted in instances in which several nucleotides could be used in any one position. This occurred only in the “third base” position. Based on this design, two N-terminal (sense) primers and two C-terminal (antisense) primers were constructed.

Amplification, isolation, and sequencing of cDNA fragments. RT-PCR using degenerate primers designed to amplify conserved regions of CYP3A genes, produced cDNA products of predicted size from adult male and female medaka. Total RNA isolated from adult liver samples was reverse transcribed and used as template for PCR reactions. Primer combinations 3A-7686/3A-7688 and 3-A7689/3A-7687 produced over-
lapping products of 528 and 711 base pairs, respectively. Individual PCR products were subsequently cloned and sequenced. By matching overlapping regions of the PCR products, a total combined sequence of 1064 base pairs was identified. Comparisons of the deduced amino acid sequence to known cytochrome P450 sequences indicated a high degree of similarity to the CYP3A subfamily. Confirmation of the sequences as belonging to cytochrome P450 superfamily, however, was based upon identification of the highly conserved heme binding region.

A full length cDNA sequence of medaka CYP3A gene was obtained by screening a medaka liver cDNA library. Approximately 5.0×10^3 plaques were screened through three cycles with a 956-base-pair probe specific to the putative medaka CYP3A sequence. Two positive clones (S3A4 and S3A15) were identified containing inserts >1.7 kb by restriction digest. Individual clones were isolated by phaged recovery and subsequently used for further studies. The complete nucleic acid sequence of each clone was determined without ambiguity on both strands by primer walking. Restriction analysis and sequencing data indicated that the two clones were identical except for an additional thymine residue at nucleotide position 176 in clone S3A4. This additional nucleotide resulted in a shift in the open reading frame that produced a truncated CYP3A38 protein. No other open reading frame was identified in this clone. The cDNA sequence and predicted translation product of clone S3A15, containing a complete open reading frame, is shown in Fig. 1. The cDNA sequence consists of 1758 nucleotides, with a 1503 coding region flanked by 34-bp 5' and 221-bp 3' noncoding regions. Several canonical eukaryotic polyadenylation signals were identified between 22 and 225 bp upstream of the poly(A) tail. A single open reading frame was identified, coding for a protein of 500 amino acids with a single ATG initiation codon, a single TAG termination signal, and a calculated molecular mass of 57,381 Da. The deduced amino acid sequence contains a putative heme binding domain around the Cys443 residue, characteristic of cytochrome P450 proteins (31).

Comparison of the deduced amino acid sequence of the medaka CYP3A to other known cytochrome P450 proteins was performed using a BLAST search. Results indicate that the medaka sequence is most similar to CYP3A27 from trout (O. mykiss), with a 72% amino-acid identity, and highly homologous to mammalian members of the CYP3A subfamily. Figure 2 shows an alignment of the medaka CYP3A sequence with trout and the four mammalian sequences of highest identity from the BLAST search including: dog CYP3A12 (58%), rat CYP3A9 (58%), sheep CYP3A24 (57%), and human CYP3A4 (57%). Medaka CYP3A sequence contains a high degree of similarity to family 2 cytochrome P450 proteins, especially the I helix and the heme binding region. This sequence was submitted to the P450 nomenclature committee and designated as member 38 of the CYP3A subfamily, GenBank Accession No. AF105018.

CYP3A expression. Both Northern and Western blots were performed to estimate the level of CYP3A expression in untreated male and female medaka. Western blot analyses was performed with a polyclonal antibody to scup (Stenotomus chrysops) CYP3A shown to cross react across several teleost species (32). Microsomal fractions of noninduced adult male and female medaka liver demonstrated the presence of two abundant immunoreactive proteins with estimated molecular weights of 57 and 58 kDa, indicating that multiple putative forms of CYP3A are recognized by the antisup antibody in medaka liver preparations (Fig. 3). A specific gender difference was consistently observed, with males demonstrating a higher intensity of both CYP3A-like proteins than females.

Expression of CYP3A at the transcriptional level was determined by Northern blot hybridization of total RNA extracted from adult male and female medaka liver using clone S3A15 as a full-length cDNA probe. Under conditions of high stringency, the CYP3A38 cDNA probe hybridized to two abundant transcripts of 1.8 and 2.2 kb in uninduced male and female medaka liver (Fig. 4). Expression of two transcripts is consistent with the Western blot data and supports the identification of two CYP3A genes. In each preparation, loadings were made with equal amounts of RNA by visualization and blots were probed using a medaka 18S RNA cDNA probe to quantify steady-state level of RNA. Consistently, Northern blots demonstrated a
gender-specific difference in band intensity between the upper and the lower transcripts. Transcripts from female liver show greater abundance in the upper mRNA transcript, whereas males proved more abundant in the lower mRNA transcript.

Heterologous expression. cDNA inserts for clones S3A4 and S3A15 were subcloned into the mammalian expression vector pCMV5 and used to transfect HEK-293 cells. Western blot analysis of HEK cells transfected with pCMV5/S3A15 revealed the expression of a single protein band. Expressed protein was reactive with anti-scup P450A polyclonal antibody and shared a similar electrophoretic mobility on SDS–PAGE gels with a single CYP3A protein identified from immunoblots of medaka liver microsomes (Fig. 5). Maximal expression of CYP3A38 occurred at 48 h after transfection. As expected, CYP3A proteins were not detected in microsomes from HEK cells transfected with pCMV5/S3A4 or pCMV5 vector only.

Steroid hydroxylase activity of medaka microsomes and expressed CYP3A38 protein was evaluated using testosterone as a substrate. The major hydroxylated testosterone metabolites formed with medaka hepatic microsomal preparations are shown in Fig. 6 (lane 5). The metabolites detected were 6β, 16β, 2β, and 2α-OH testosterone by comigration of 14C-labeled steroid metabolites with authentic unlabeled hydroxysteroid standards in multiple TLC solvent systems. Formation of these major testosterone metabolites is in agreement with those previously characterized with medaka hepatic microsomes (6). CYP3A38 cDNA expressed in HEK 293 cells metabolized testosterone at two predominate positions. The major polar metabolites were identified as 6β-OH and 16β-OH testosterone. Metabolism of testosterone at both the 6β and the 16β position was slightly enhanced by the addition of cytochrome P450 reductase to the in vitro incubations (Fig. 6, lane 3). Formation of the 16β-OH metabolite was not observed in microsomes from HEK 293 cells transfected with pCMV5/S3A4 or pCMV5 vector alone (Fig. 6, lane 1 and 2), indicating that formation of this product is specific to expressed CYP3A38. Product formation for the 6β-OH testosterone metabolite was most abundant in microsomes prepared from HEK 293 cells transfected with CYP3A38 (Fig. 6, lanes 3 and 4). 6β-OH testosterone was observed however, in treat-

FIG. 1. Nucleotide and amino acid sequence of medaka CYP3A38. Deduced amino acid sequence from the open reading frame is in single-letter notation under the second letter of each codon. Putative polyadenylation signals AATAAA are underlined.
ments containing vector only and pCMV5/S3A4 suggesting that a basal level of testosterone metabolism occurs in HEK 293 cells. Additionally, 2α-OH and 2β-OH testosterone metabolites identified with medaka hepatic microsomes were not observed in HEK 293 cells transfected with pCMV5/S3A15, indicating that CYP3A38 does not actively catalyze formation of these products.

DISCUSSION

Several lines of evidence support our contention that we have cloned a new member of the CYP3A gene family from the fresh water teleost, medaka. Analysis of the deduced amino acid sequence of clone S3A15 displayed a high degree of sequence similarity to members of the cytochrome P450 superfamily of monoxygenases (31). Several well conserved regions of cytochrome P450 are present in the deduced amino acid sequence, including the highly conserved heme binding region, containing Cys443, which acts as the fifth ligand to heme molecule, the aromatic and I helix region, a
proline-rich region downstream of the amino terminus, and the signal anchor sequence (33, 34). When compared to cytochrome P450 sequences in the GenBank database, the deduced amino acid sequence of the medaka gene demonstrates a high degree of similarity to CYP3A orthologs of phylogenetically distant organisms. Within the CYP3A family, medaka CYP3A38 is most similar to trout CYP3A27, suggesting an early phylogenetic lineage of this gene family between two distantly related fish species.

Translation of the open reading frame for clone S3A4 containing the additional T residue resulted in a highly truncated 3A protein product of 60 amino acids. The resulting frame shift produced a protein sequence that lost sequence similarity to CYP3A enzymes and lacked functional motifs of cytochrome P450 genes including the heme binding region. Interestingly, Fukada et al. (35) reported a similar phenomenon for cytochrome
P450 aromatase isolated from medaka ovarian follicles. Insertion of these additional nucleotides may represent errors in mRNA intron/exon splicing or could be attributed to errors in reverse transcription during cDNA synthesis.

CYP3A gene sequences have been identified in two additional fish species including killifish (Fundulus heteroclitus) and rainbow trout. Celander et al. (36) reported a 300-bp sequence from killifish and examined phylogenetic relatedness to mammalian CYP3A sequences. Recently Lee et al. (22) reported the identification of one full-length CYP3A sequence from rainbow trout. Comparisons of our medaka sequence with those of trout and killifish indicate that marked structural similarities to mammalian CYP3A proteins exist. This is not surprising due to the high degree of cross-reactivity observed between rat, human, and fish CYP3A antibodies (32). The similarity of these teleost CYP3A sequences to mammalian sequences additionally indicates that they may have similar catalytic functions. Miranda et al. (37) have shown that microsomal preparations of trout liver catalyze the hydroxylation of testosterone to 6α-hydroxytestosterone. These metabolic oxidations were inhibited by the addition of gestodene, a CYP3A-specific inhibitor. Correlation of 6α-hydroxytestosterone activity in winter flounder was also determined by inhibition of microsomal steroid hydroxylase activity with antibodies to scup CYP3A protein (38).

In mammalian liver, CYP3A isozymes have been shown to catalyze the oxidation of numerous xenobiotics and steroid hormones with stringent stereo- and regiospecificity (39). Expressed CYP3A proteins from several species have demonstrated high affinities toward testosterone, progesterone, androstendione, and other steroids. Predominant metabolic activity for CYP3A genes has been the formation of the 6β-OH metabolite; however, minor metabolites of at positions 1β, 2β, 15α, and 16β have been observed (13–16). In our expression studies we found that expressed CYP3A38 catalyzes the formation of 6α-OH and 16β-OH testosterone. Catalytic activity of expressed CYP3A protein was low in microsomes of CYP3A38 transfected HEK 293 cells and simultaneous addition of purified rat reductase only slightly enhanced metabolite formation. In general, the CYP3A family of enzymes tends to show poor catalytic activity in typical lipid systems that are appropriate for other cytochrome P450 reactions (40, 41). CYP3A mediated oxidations are known to be highly sensitive to assay conditions, including types and amounts of phospholipids, detergents, and cytochrome b5 (40, 42). Although cytochrome b5 significantly enhances CYP3A activity, its effect appears to be substrate dependent (43–45). Alternately, low catalytic activity may represent an incompatability of medaka and other teleost cytochrome P450s with mammalian NADPH reductase and membrane architecture. Protein–protein and protein–lipid interactions are important for function microsomal monoxygenase activity. Brian et al. (46) observed that CYP3A4, expressed in yeast, did not couple well with NADPH reductase, resulting in inconsistent catalytic activities. Additionally, Yang et al. (47) have reported similar low catalytic activities for trout CYP2M1 expressed in COS-1 cells.

Surprisingly, only slight 6β-hydroxylation of testosterone was observed above and beyond background for HEK 293 cells, suggesting that CYP3A38 may be preferential for hydroxylation at the 16β position. 16β-OH in addition to 6β-OH testosterone has been identified as a major metabolite formed by adult liver microsomes from trout (21). 16β-OH has not previously been observed as a major testosterone metabolite in mammalian liver; however, it is an abundant metabolite produced in mammalian kidney and lung (48). Often metabolic properties of different steroids vary with tissue type. Mostly, this has been attributed to selective expression of varying cytochrome P450 genes. However, members of the CYP3A gene family, across and within the same species, demonstrate significant differences in catalytic activity and metabolite profiles. For example, two canine CYP3A isozymes, CYP3A12 and CYP3A26, revealed functional distinctions in steroid hydroxylase activity with CYP3A26 being uniformly less active than CYP3A12 (49). Similar comparisons of human forms CYP3A4, CYP3A5, and CYP3A7 revealed important differences in hydroxylation profiles and catalytic activities using endogenous substrates and a variety of drugs (44, 50).

In this study we have identified multiple CYP3A proteins in medaka liver. This data is consistent with immunoblot analysis of other fish species including tomcod, winter flounder, and trout in which multiple CYP3A-like proteins have been observed (32, 38). It must be noted, however, that multiple transcripts detected by Northern blots may be a result of alternate polyadenylation signaling. Expression of two or more CYP3A isoforms has been observed in numerous species (50–52). Often, however, the functional significance of multiple CYP3A proteins has not been determined. Presumably, isozyme-specific gene expression, substrate specificity, and metabolic profiles among individual CYP3A proteins have relevant physiological significance. For example, fetal forms of CYP3A have been identified in humans and rodents (50, 53). These forms are constitutively expressed during fetal development and diminish remarkably after birth. While important for xenobiotic metabolism, these genes may additionally play an important role in early steroid metabolism and thus fetal development. To date, the physiological role of CYP3A enzymes in medaka is yet to be determined.
This study has resulted in the isolation, expression, and characterization of a cDNA encoding medaka CYP3A enzyme. Functional activity of this enzyme has been identified as 6β and 16β testosterone hydroxylase. This is the first report demonstrating catalytic activity for a CYP3A family member in teleost fish. Immunoblots and Northern blot analysis confirm the presence of multiple CYP3A isozymes in medaka liver with CYP3A38 corresponding to the lower molecular weight protein identified in Western blot studies. Further studies are currently being conducted to examine expression, development, and catalytic activities for each of the medaka cytochrome P450 proteins.

ACKNOWLEDGMENTS

We express our appreciation to Dr. Rebecca Van Beneden, Department of Biochemistry, Microbiology and Molecular Biology, University of Maine, for generously providing the medaka liver cDNA library and to Dr. Malin Clander, Department of Zoopharmacology, University of Goteborg, and Dr. J ohn Stegeman, Department of Biology, Woods Hole Oceanographic Institution, for providing the scup anti-CYP3A antibody. We additionally thank Dr. Mark Okihio, Department Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, for his assistance in the care and maintenance of the fish used in this study and Dr. A. Conley and Joe Corbin, Department of Population and Reproductive Health, School of Veterinary Medicine, University of California Davis for generously providing the medaka liver and HEK 293 cells. This study was supported in part by U.S. Public Health Service Grant CA-45131, the National Cancer Institute ES-04699, the Superfund Basic Science Research Program CR8191658-010 and the UC Davis, U.S. EPA Center for Ecological Health Research R823297. Additional support was provided by the UC systemwide Toxic Substance Research and Teaching Program, leading campus in Ecotoxicology.

REFERENCES