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Objective(s) of the Research Project:  The main objective of this project was to quantitatively 
characterize spatio-temporal measurement error of ambient air particulate matter (PM) and 
gaseous co-pollutants measured at routine regulatory-based air monitors as a function of site 
characteristics using the entire U.S. air-monitoring network.  The rationale was that, while PM10 
was often reported to be associated with health outcomes most significantly among the criteria 
air pollutants, this may have been in part due to differential exposure characterization error— 
PM10 may have less measurement error than other pollutants.  Furthermore, we expected that 
PM10 might have varying exposure characterization error across U.S. due to varying source 
types, which may result in heterogeneity of estimated PM10 risk estimates across cities.  The 
prevailing hypothesis was that the PM10 and gaseous co-pollutants data from a single air 
monitoring station could adequately reflect the population exposure for the entire city, and that 
resulting risk estimates and their significance are not biased.  Also, during the course of this 
project, the new PM2.5 chemical speciation network’s data became available (from ~ 2001).  
Therefore, we also examined exposure characterization error across components of PM2.5.  
 
Summary of Findings: 
 
Technical Aspects 
 
Monitor-to-monitor correlation was computed for PM10 and gaseous criteria pollutants in seven 
North-Central States:  Illinois, Indiana, Michigan, Ohio, Pennsylvania, Wisconsin, and West 
Virginia (Ito, et al., 2001).  These states cover 312,968 square miles, and contain over 56 million 
people.  The study area also included major cities, such as Chicago, Cincinnati, Cleveland, 
Columbus, Detroit, Indianapolis, Milwaukee, Philadelphia, and Pittsburgh.  Air pollution data for 
PM10, SO2, O3, NO2, and CO were retrieved from U.S. EPA’s Aerometric Information Retrieval 
System (AIRS, now called Air Quality System, or AQS) for study period 1988-1990 for these 
states.  The AIRS working file format AMP355 was used.  The number of monitoring stations 
for these states was 287, 295, 241, 80, and 108 for PM10, SO2, O3, NO2, and CO, respectively.  
Since most of the PM10 data were collected on an every-6th-day sampling schedule (gaseous 
pollutants and weather variables were collected every day) at most sites, the data analyses were 



to be conducted for the PM10 sampling days only (total of 183 possible days during the 3 year 
period), in order to use comparable sample sizes.  After removing seasonal trends, the monitor-
to-monitor temporal correlation among the air pollution/weather variables within 100 mile 
separation distance in these areas could generally be ranked into three groups:  1) temperature, 
dew point, relative humidity (r>0.9); 2) O3, PM10, NO2 (r:  0.8-0.6); and 3) CO, SO2 (r<0.5).  
Using the subsets for separation distance less than 100 miles, regression analyses of these 
monitor-to-monitor correlation coefficients were also conducted with explanatory variables 
including separation distance, qualitative (land use, location setting, and monitoring objectives), 
and quantitative (large and small variance) site characteristics, and region indicators for Air 
Quality Control Regions (AQCR).  The AQCRs are EPA-designated regional boundaries that 
were established based on jurisdictional boundaries, urban-industrial concentrations, and other 
factors such as air sheds, for the purpose of providing adequate implementation of National 
Ambient Air Quality Standards (NAAQS).  The separation distance was a significant predictor of 
monitor-to-monitor correlation decline especially for PM10 and NO2 (~0.2 drop over 30 miles).  
Site characteristics were, in some cases, significant predictors of monitor-to-monitor correlation, 
but the magnitudes of their impacts were not substantial.  Regional differences, as examined with 
AQCR indicators were, in some cases (e.g., Metropolitan Philadelphia) substantial, to the extent 
that the pollutants that have generally poor monitor-to-monitor correlation in the overall 7 states 
data (i.e., SO2 and CO) showed monitor-to-monitor correlation comparable with PM10 and O3.  
 
We extended the analysis to the nationwide data for years 1988-1997 (Ito, et al., 2005).  We 
retrieved data from the EPA’s AIRS database.  The data analyses were to be conducted for the 
PM10 sampling days only for all the air pollutants, in order to use comparable sample sizes.  The 
total number of monitors analyzed were 1892, 1133, 969, 352, and 632, for PM10, O3, SO2, NO2, 
and CO, respectively.  Monitor-to-monitor correlations were computed for all the monitors 
within each of the AQCRs, limiting the scale of separation distance within the region.  The 
medians of the within-AQCR median separation distance for PM10, SO2, O3, NO2, and CO were 
26, 19, 26, 18, and 11 miles, respectively.  The AIRS database contains monitor characteristic 
data elements associated with each air pollution monitor.  These include:  Land Use (Residential, 
Commercial, Industrial, Agricultural, Forest, Desert, and Mobile); Location Setting (Urban, 
Suburban, and Rural); and Monitoring Objective (Maximum Concentration, Population 
Exposure, Background, Source, and Objective Changed).  The overall rankings in monitor-to-
monitor correlation on the average were, in descending order, O3, NO2, and PM10, (r ~ 0.6 to 0.8) 
> CO (r < 0.6) > SO2 (r < 0.5).  The resulting median monitor-to-monitor correlation for each 
monitor was modeled as a function of qualitative site characteristics (i.e., land-use, location-
setting, and monitoring-objective), and quantitative information (median separation distance, 
longitude/latitude or regional indicators) for each pollutant using Generalized Additive Models 
(GAM).  To assure convergence of the GAM’s iterative estimation procedure, the convergence 
criteria parameters, as suggested by Dominici, et al. (2002), were as follows:  epsilon = 10-14; 
back-fitting epsilon = 10-14; maximum iteration = 1000; and back-fitting maximum iteration = 
1000.  A smoothing function of median separation distance was included in the regression with 
locally estimated smoothing.  The correlation was assumed to decline uniformly as a function of 
separation distance.  Therefore, a relatively wide span of 0.4 was chosen for all the air pollutants.  
Based on our previous analysis using a smaller geographic coverage of North-central states (Ito, 
et al., 2001), having a very large or small variance of temporal fluctuations was a significant 
predictor of a low correlation.  Therefore, indicator variables for the monitors with the largest 



and smallest variance in the five percentiles were also included in the regression model.  
Regional variation, or heterogeneity, of the monitor-to-monitor correlation was modeled using 
two alternative approaches:  1) using the seven regional categories; and 2) applying a smooth 
function of longitude/latitude.  As with the qualitative monitor characteristic variables, the seven 
regional categories were arbitrarily numbered and modeled as a group, using the smoothing 
spline function with six degrees of freedom.  Since the regional differences in the distribution of 
median separation distance may influence the estimate of regional variation, even with the 
simultaneous inclusion of median distance in the model, the analysis was also repeated using the 
data stratified by the separation distance.  The data were split in half at the median, and also in 
fourths at quartile values. In the model using smoothing function of longitude/latitude (‘loess’ in 
S-plus), a series of spans (0.4, 0.3, 0.2, 0.10, 0.05, 0.02, and 0.01) were used because we did not 
have strong assumptions regarding the pattern and smoothness of the regional variation pattern.  
The span for the final model was chosen for each air pollutant based on:  1) a visual inspection of 
the spatial pattern of the predicted values; 2) distribution of the predicted values; and 3) the 
generalized cross-validation values computed for each of the spans.  Both the separation distance 
and regional variation were important predictors of the correlation.  For PM10, for example, the 
correlation for the monitors along the East Coast was higher by ~0.2 than for western regions.  
The qualitative monitor characteristics were often significant predictors of the variation in 
correlation, but their impacts were not substantial in magnitude for most categories.  
 
These results suggest that the apparent regional heterogeneity in PM10 effect estimates, as well as 
the differences in the significance of health outcome associations across pollutants may, in part, 
be explained by the differences in monitor-to-monitor correlations by region and across 
pollutants.  To examine this issue, we also conducted a regression analysis to see if the 
heterogeneity of PM10 risk estimates across the National Morbidity, Mortality, and Air Pollution 
Study (NMMAPS) 90 cities (publicly available) could in part be explained by the difference in 
the extent of PM10 monitor-to-monitor correlation.  Of the 90 cities, 83 cities could be matched 
with the median PM10 monitor-to-monitor correlation discussed above.  The inverse-variance 
weighted regression of PM10 mortality risk estimates on the median PM10 correlation showed a 
positive prediction of PM10 mortality risk estimates with a slope of 0.14 (95% CI:  [-0.02, 0.30]) 
per 0.1 increment of PM10 correlation.  
 
Possible exposure characterization errors across PM2.5 components were examined using PM2.5 
chemical speciation data collected at three locations in New York City during 2001–2002 (Ito, et 
al., 2004).  The species that are associated with secondary aerosols (e.g., SO4, NH4, NO3, organic 
carbon [OC], etc.) tended to show high monitor-to-monitor correlations, whereas the species that 
are likely associated with more local sources (e.g., elemental carbon [EC] as a traffic source 
marker) showed lower monitor-to-monitor correlations.  Source-apportionment using these data 
was also conducted for each monitor’s data.  The estimated source-apportioned PM2.5 mass 
generally showed the highest monitor-to-monitor correlation for the secondary aerosol factor (r 
range:  0.72–0.93).  The correlation for the more localized traffic-related factor was more 
variable (r range:  0.26–0.95).  The estimated mean PM2.5 mass contributions by source/pollution 
type across the monitors varied least for the secondary aerosol factor.  We also extended the 
analysis to 28 metropolitan statistical areas (MSA’s) where multiple monitors generated PM2.5 
chemical speciation data for the years 2001-2003.  We analyzed a set of key PM2.5 components 
that were of interest in terms of toxicological effects, source signature, and generally large 



signal-to-noise ratios:  i.e., Ni, V, Pb, Cr, Mn, Fe, Si, As, Se, SO4, NH4, NO3, EC, and OC.  
Again, the species associated with secondary aerosols (e.g., SO4, NO3) showed high monitor-to-
monitor correlation.  However, the monitor-to-monitor correlation for other species varied 
widely across the MSA’s, likely reflecting the variation in the levels and major source types 
across the MSAs.   
 
The monitor-to-monitor correlations discussed above are pertinent to the interpretation of results 
from short-term effects (i.e., time-series and longitudinal) studies.  However, we also examined 
potential exposure characterization errors that are pertinent to long-term effects (i.e., cohort and 
cross-sectional) studies, using the same 28 MSA’s.  We found that, for the key PM2.5 
components, the coefficient of variation (CV) for across-MSA variation was generally far larger 
than those for within-MSA variations, with only a few exceptions.  This result suggests that the 
quality of spatial resolution of the key PM2.5 components is sufficient and adequate for the 
analysis of cross-sectional cohort data.  
 
The results from the source apportionment workshop (Thurston, et al., 2005; Hopke, et al., 2006; 
Ito, et al., 2006; Mar, et al., 2006) also provided information regarding the exposure 
characterization error associated with source-apportioned PM2.5.  The comparison of source-
apportioned PM2.5 across investigators using the PM2.5 chemical speciation data sets from 
Phoenix, AZ and Washington, DC found that soil-, secondary sulfate-, residual oil combustion-, 
and salt-associated mass were most unambiguously identified by various methods, whereas 
vegetative burning and traffic were less consistently identified.  Combined with the result 
suggestive of varying exposure characterization error across PM2.5 species, and across U.S. 
regions mentioned above, a systematic examination of multi-city time-series health effects 
analysis will be needed.  We compared the mean levels of key PM2.5 chemical species and the 
published PM10 mortality risk estimates in the 60 MSA’s in the NMMAPS study for which 
speciation data were available, and found that the city-to-city variation of PM10 risk estimates 
could be better explained by some PM2.5 chemical species (Ni and V) than others (Lippmann 
et al., 2006).  Thus, the city-to-city variation in PM health risk estimates may be modified by 
components of PM2.5.  Our future research will directly examine this issue.   
 
Conclusions 
 
There are differential exposure characterization errors across PM and gaseous pollutants at 
ambient levels.  PM10, PM2.5, O3, and NO2 tend to have moderate to high temporal correlations 
across monitors within cities, compared to CO and SO2.  These errors also vary by region and 
site-specific characteristics.  Some of the differences in the observed health effects across 
pollutants in the past health effects studies may be explained by our findings.  However, the 
estimated ecologic level exposure characterization errors did not explain the city-to-city variation 
in the PM10 mortality risk estimates substantively.  Components of PM may play roles in the 
city-to-city variation of PM health risks.  A more comprehensive assessment of the overall 
exposure characterization error will need to consider personal level exposure error, but such 
information is currently available from only a few cities.  
 
The project was technically feasible to conduct. 
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