Simultaneous Precipitation and Flocculation in Water Treatment: Modeling and Experiments

Problem Statement
Tightening regulations and the increasing use of non-traditional downstream treatment processes are changing the role of flocculation in drinking water treatment. The current understanding of precipitative coagulation, which is employed by the vast majority of treatment plants, is not sufficient to allow water treatment engineers to meet these challenges.

Background/Motivation
Flocculation is the process of inducing particle collisions and growth by providing detention time and mixing. The aim is to convert the large number of small particles that are present in the raw water into a smaller number of large particles that are easily removed in subsequent processes.
Precipitative Coagulation refers to flocculation processes where new solids are formed from added chemicals (e.g., alum or iron sweep-floc coagulation and lime softening).

Approach:
Mathematical modeling – incorporate precipitation (nucleation and crystal growth) into the existing short-range flocculation model
Laboratory experimentation – 1) determine rate expressions for nucleation and crystal growth; 2) measure the evolution of PSDs in precipitative coagulation processes
• Batch precipitation experiments
 - CaCO₃ to emulate lime softening
 - Al(OH)₃ to emulate alum sweep coagulation
• PSD measurements via Coulter Counter (see Figure 3)

Figure 2. Flocculation Modeling: A. Success and B. Failure

New Roles for Flocculation:
• New regulations for the removal of particles and dissolved constituents such as arsenic and NOM have placed an increased focus on precipitative coagulation processes.
• The optimal PSDs required by new downstream processes (e.g., dissolved air flotation and membrane filtration) can be quite different from those required by conventional treatment (sedimentation and granular media filtration).

Research Methodology
Objective:
Develop a mathematical model that quantitatively describes how PSDs are changed by simultaneous precipitation and flocculation

Figure 3. PSD Evolution During Lime Softening

Potential Impacts
Improved Drinking Water Quality:
The model produced as a result of this research will be used as a tool to help water treatment engineers optimize precipitative coagulation; the new roles of these processes must be considered in design and operation. Such optimization will likely result in cleaner, safer drinking water.