2004 EPA STAR Graduate Fellowship Conference

Next Generation Scientists—Next Opportunities

Overview

- ■PCBs in sediment threaten local food chains
 - •Fish consumption advisories
 - Adverse health effects, possibly cancer
- Traditional "dredge and dump" is expensive, disrupts habitat, and leaves residual PCBs
- Need new in-situ technologies to clean up PCB-contaminated sites

Hypotheses

Adding activated carbon to PCBcontaminated sediment can reduce PCB bioavailability to clams.

Effectiveness will depend on:

- 1. Carbon dose
- 2. Carbon size

Scientific Approach

 Obtain PCB-contaminated sediment from Hunters Point Naval Shipyard, San Francisco, CA (Superfund site)

Expose clams (Macoma balthica) to Hunters Point sediment with and without carbon amendment

- Carbon and sediment well-mixed for one month
- ■Clams in sediment for 28 days
- ■20 clams per jar

 Measure PCB concentrations in clam tissues, using gas chromatography (GC)

Results and Impact

70-80% reduction in total PCB uptake be 1000 by clams, at high carbon dose and short contact time

% reduction in PCB uptake

- 1. increases with carbon dose
- 2. deceases with carbon size

Field demonstration at Hunters Point

- ■Validate laboratory results
- •Investigate mixing strategies

Potential benefits for impaired sites

- •Increase redevelopment opportunities
- Limit human exposure to PCBs through food

Collaborators: Martine van den Heuvel-Greve (Dutch National Institute for Coastal and Marine Management); Samuel N. Luoma (United States Geological Survey); Richard G. Luthy (Stanford University)
For more information, please see (1) McLeod, et al. 2004 Environ. Sci. Technol. 38:4549; (2) Stanford Report 9/1/2004, http://news-service.stanford.edu/news/2004/september1/aqua-mog-91.html