
STATISTICS IN MEDICINE
Statist. Med. 2000; 19:2377–2397

Posterior predictive model checks for disease mapping
models

Hal S. Stern1;∗;† and Noel Cressie2

1Department of Statistics; Iowa State University; Ames; IA 50011-1210; U.S.A.
2Department of Statistics; Ohio State University; Columbus; OH 43210-1247; U.S.A.

SUMMARY

Disease incidence or disease mortality rates for small areas are often displayed on maps. Maps of raw rates,
disease counts divided by the total population at risk, have been criticized as unreliable due to non-constant
variance associated with heterogeneity in base population size. This has led to the use of model-based Bayes
or empirical Bayes point estimates for map creation. Because the maps have important epidemiological and
political consequences, for example, they are often used to identify small areas with unusually high or low
unexplained risk, it is important that the assumptions of the underlying models be scrutinized. We review the
use of posterior predictive model checks, which compare features of the observed data to the same features
of replicate data generated under the model, for assessing model �tness. One crucial issue is whether extrema
are potentially important epidemiological �ndings or merely evidence of poor model �t. We propose the use
of the cross-validation posterior predictive distribution, obtained by reanalysing the data without a suspect
small area, as a method for assessing whether the observed count in the area is consistent with the model.
Because it may not be feasible to actually reanalyse the data for each suspect small area in large data sets,
two methods for approximating the cross-validation posterior predictive distribution are described. Copyright
? 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

Disease incidence or disease mortality rates for a collection of geographic areas are commonly
displayed on maps. For example, one might see a map of cancer incidence rates for counties in
the United States. Maps of raw rates, de�ned as disease incidence or mortality counts divided by
at-risk population, have been criticized as unreliable due to non-constant variance associated with
heterogeneity in at-risk population sizes. This has led to the suggestion that model-based Bayes or
empirical Bayes point estimates be used to create maps [1–8], often maps of relative risk. Because
such maps have important epidemiological and political consequences, it is important that the

∗Correspondence to: Hal S. Stern, Department of Statistics, Iowa State University, Ames, IA 50011-1210, U.S.A.
†E-mail: hstern@iastate.edu

Contract=grant sponsor: Environmental Protection Agency; contract=grant number: CR822919-01-0
Contract=grant sponsor: O�ce of Naval Research; contract=grant number: N00014-99-1-0214
Contract=grant sponsor: National Cancer Institute; contract=grant number: CA78169-02

Copyright ? 2000 John Wiley & Sons, Ltd.



2378 H. S. STERN AND N. CRESSIE

assumptions of the underlying models be scrutinized. For example, it is often of interest to identify
regions corresponding to extremely high or low unexplained risk of disease, and, consequently, it
is important to determine whether observed extrema among the estimated risks are too large (or
too small) to have occurred by chance under the model. If the observed value is too large (or too
small), then the model is incorrect either because an important (maybe undiscovered) risk factor
has been omitted or because one of the statistical assumptions is inappropriate. In the former case
we should investigate the site in question, whereas in the latter case respeci�cation of the model
is the remedy. There is a potential problem in that we may end up always blaming the statistical
assumptions of the model for the existence of extreme values and consequently fail to investigate
potentially interesting sites. Here, we ask whether it is possible to use diagnostics for all of the
regions, rather than just a single region, to determine whether the model is awed. In that way,
we hope that areas with extreme estimates will still be identi�ed for further study while cutting
down on false candidates suggested by invalid models.
We use a common statistical model for disease data in which the observed count of disease

cases (incidence or mortality) in a small area is assumed to be a Poisson random variable with
mean equal to the product of the expected number of cases (based on known risk factors) and
a relative risk parameter. The logarithms of the relative risk parameters are assumed to follow a
Gaussian distribution with mean that may incorporate potentially relevant risk factors, and variance
matrix that incorporates the possibility of spatial dependence. The spatial dependence allows for
the accommodation of correlation induced by unmeasured covariates, for example. Examples of
this form of model are those described by Besag et al. [4] and Stern and Cressie [9; 10]. These
models may also be extended to accommodate repeated observations over time (see, for example,
Waller et al. [11] and Knorr-Held and Besag [12]), but we do not consider that case here.
The adequacy of such a model can be addressed using posterior predictive model checks as

described by Rubin [13] and Gelman et al. [14; 15]. The posterior predictive approach to assessing
model �t compares features of the observed data to the same features of replicate data generated
under the model. Posterior predictive checks are easily carried out given simulations from the pos-
terior distribution of the model parameters; such simulations are often available from a Bayesian
analysis of the data under the model. We argue that posterior predictive model checks are use-
ful for assessing the overall �t of a model and for checking speci�c assumptions. As generally
applied, however, they are less useful for assessing whether there exist one or more extreme obser-
vations inconsistent with the model. We propose a cross-validation posterior predictive approach
to assessing individual observations. The basic idea is to assess the model’s �t to the count in
a given area by comparing the observed disease count in that area with a predictive distribution
obtained by reanalysing the original data without the area in question. One potential disadvantage
of this approach is that for large data sets there may be many suspect areas and consequently a
large number of additional data analyses. To avoid re�tting the model without each small area, we
describe the use of importance weighting and importance resampling to approximate the posterior
distribution that would be obtained if the analysis were repeated without the small area.
Section 2 reviews notation and statistical models for analysing disease-incidence and disease-

mortality data, concentrating on the Poisson-log-Gaussian model. The basic model is applied to a
well known data set, the Scotland lip cancer data of Clayton and Kaldor [2]. Section 3 describes
posterior predictive model checking and how it can be applied in the disease mapping context.
There, the primary focus is on overall questions of �t and model speci�cation. The important
question of identifying whether regions with extreme rates are evidence of general model failure is
addressed using cross-validation in Section 4. The model checking and cross-validation techniques
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are applied to the Scotland lip cancer data in Section 5. We provide some concluding remarks in
Section 6.

2. MODELS FOR DISEASE MAPPING

2.1. A Poisson-log-Gaussian model

For purposes of discussion we use the terminology associated with analysing disease incidence
data. Let Y =(Y1; : : : ; Yn) represent the vector of observed cases of a disease from n geographical
regions or districts and let E =(E1; : : : ; En) indicate expected counts based on known risk factors.
The expected counts E represent a form of standardization of the data. Introduce �=(�1; : : : ; �n)
as a vector of relative risk parameters. Then, conditional on the expected counts and the relative
risk parameters, we model the observed cases as independent Poisson random variables

Yi; | �i; Ei∼Poisson(�iEi); i=1; : : : ; n (1)

Because the expected counts E play an important role in the development of cross-validation
diagnostics, we take a brief digression here to explain them further. Suppose that we consider
the population at risk of developing the disease as consisting of K demographic groups or strata.
These may be de�ned, for example, based on age and gender. De�ne qk to be the proportion of
the at-risk population in stratum k expected to develop the disease. If the population at risk in
region i is Ri with Rik people in the kth stratum, then the expected count for region i is

Ei=
K∑
k=1
Rikqk (2)

Of course the qk ’s need to be estimated. If estimates are available from a source outside of the
current data set (perhaps an international data registry), then the data are said to be externally
standardized. A common alternative is to use internal standardization whereby the same population
that yields the data Y are also used to estimate the rates for the strata. An obvious estimator for
qk is the proportion of the at-risk population in stratum k (totalled over all regions) that developed
the disease. To formally de�ne this estimator, let Ojk denote the number of observed disease cases
from region j in the kth stratum; notice that Yj =

∑
kOjk . Then the sample proportions are

q̂k =

∑n
j=1Ojk∑n
j=1Rjk

; k =1; : : : ; K (3)

It is easy to verify that internal standardization using the sample proportions introduces a form of
dependence among the elements of Y ; in that

∑n
i=1Yi=

∑n
i=1Ei. It is common practice to analyse

the data conditional on the Ei, ignoring the dependence, and we follow that practice here. In
general we do not explicitly include this conditioning in our notation.
The standardized morbidity ratio (SMR) for the ith area is de�ned as SMRi ≡ Yi=Ei; i=1; : : : ; n.

The relative risk parameters, �, can be thought of as smooth versions of the SMRs. The relative
risk parameters are modelled as having a joint population (or prior) distribution. Since the �i are
positive, we place a prior distribution on the logarithms of the relative risks, �=(�1; : : : ; �n), where
�i= ln �i. Assume

� | �; �2; �∼Gau(X�;��2) (4)

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2377–2397



2380 H. S. STERN AND N. CRESSIE

where X is an n × p matrix of predictor variables, � is the unknown regression coe�cient vec-
tor, and ��2 is a variance matrix that allows for spatial dependence. The p columns of the
covariate matrix X reect factors thought to be associated with variation in disease incidence
rates (after the rates have been adjusted for the known demographic risk factors incorporated
in E).
The matrix � in the variance of the prior distribution (4) can be parameterized according to

a spatial-dependence model, namely �= (I − �C)−1M , where C =(cij) is a spatial-association
matrix with zeros on the diagonal, � is a parameter measuring spatial dependence, and M is a
known diagonal matrix chosen so that � is positive-de�nite. Examination of �−1 indicates that � is
symmetric as long as mjjcij =miicji. Note that the variance matrix can be expressed as �=M 1=2(I−
�M−1=2CM 1=2)−1M 1=2. Then the variance matrix is positive-de�nite for �∈ (�min ; �max), where the
upper and lower limits are determined by the eigenvalues of M−1=2CM 1=2 (Section 7:6 of Cressie
[16]). There is considerable exibility in the choice of M and C for de�ning the variance matrix
in the model for �. In the remainder of this paper we take cij =(Ej=Ei)1=2 if area j is a neighbour
of area i and zero otherwise, and mii=E−1

i for i=1; : : : ; n. This leaves �2¿0 and � as free
parameters, as was done in Stern and Cressie [9; 10]. The Gaussian model on � is an example
of the conditional autoregressive model (see, for example, Besag [17] and Section 6:6 of Cressie
[16]). Let Ni ≡ {j : cij 6= 0} represent the ‘neighbours’ of i and �−i=(�1; : : : ; �i−1; �i+1; : : : ; �n)′;
then

�i | �−i∼N
(
(X�)i + �

∑
j∈Ni
cij(�j − (X�)j); �2mii

)
; i=1; : : : ; n (5)

where (X�)i is the ith element of the vector X�. The conditional autoregressive model assumes
there is a linear association between the logarithm of the relative risk in region i and the logarithms
of the relative risks in neighbouring regions. The parameter � and the matrix C determine the
degree of association. In most disease-mapping applications, negative values of � seem unlikely
so that we restrict �¿0.
To complete the Bayesian model speci�cation, we require a prior distribution on the remaining

parameters (�; �2; �). We take the non-informative prior distribution corresponding to independent
at prior distributions for � and � and a nearly at prior distribution for �:

p(�; �2; �)∝ e−�=�2 for �∈ (0; �max); �2¿0 (6)

with �=0:01. This is not a proper distribution but it does lead to a proper posterior
distribution.
The model we consider here is a special case of a more general class of models that assumes

var(� | �; �2; �2; �)=D�2 + ��2; where D�2 is a diagonal matrix accounting for inhomogeneities
in risk not presumed to be spatially correlated. This broader class also includes the popular model
of Besag et al. [4].

2.2. Posterior inference

In the remainder of this paper, we take the model to be that given by (1), (4), (6). We can obtain
posterior inferences for the parameters of the model by simulating from the posterior distribution
using Markov chain Monte Carlo. For an overview of Bayesian modelling and computation, see
Gelman et al. [14], Carlin and Louis [18], and Gilks et al. [19]. We use a Gibbs sampling
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algorithm, wherein the conditional posterior distributions of each parameter (or set of parameters)
given all of the others are used in succession to construct a Markov chain in the parameter space
that has the joint posterior distribution as its stationary distribution. After the chain has been run
for a su�ciently long time, the simulated draws may be taken as being representative of the joint
posterior distribution. In this case, the conditional distributions of � and �2 are easily recognized as
normal and inverse chi-squared distributions, respectively. The remaining conditional distributions
are not standard distributions so that alternative algorithms are required. For the example, we used
univariate Metropolis–Hastings steps for the �i. The conditional distribution of � is quite complex
because of the way � appears in the covariance matrix. It too is sampled within the Gibbs sampling
algorithm using a Metropolis–Hastings step. Convergence was assessed from independent Markov
chain simulations using the approach of Gelman and Rubin [20].

2.3. Example: Scotland lip cancer data

The Poisson-log-Gaussian model is used to analyse data representing male lip cancer rates (over
the period 1975–1980) in the n=56 districts of Scotland. These are the districts prior to the 1995
reorganization of local government. Table I repeats the lip cancer data (originally analysed by
Clayton and Kaldor [2]) from Breslow and Clayton [21] with district names provided in Cressie
[16]. The table includes district names and identifying numbers, and for district i with i=1; : : : ; 56:
the number of observed cases Yi; the number of expected cases Ei; the standardized morbidity rate
SMRi= Yi=Ei; the value of a single covariate (per cent of population employed in agriculture,
�shing and forestry) Xi; and a list of the neighbouring regions. The expected counts are computed
using a form of internal standardization (the method of Mantel and Stark [22]) to adjust for the
age distribution in the districts. We apply the Poisson-log-Gaussian model of Section 2.1 with the
matrix X consisting of a column of ones corresponding to an intercept and the single covariate
in Table I. For the neighbourhood structure indicated in Table I and the choices of C and M
described in Section 2.1 we �nd that �max = 0:175:
One thousand simulations from the posterior distribution were obtained using the algorithm

described in Section 2.2; the results are summarized in Table II. In addition, histograms showing
the posterior distribution of �i for four districts of special interest are given in Figure 1.
These correspond to the districts with largest and smallest values of SMRi, Skye-Lochalsh (dis-

trict 1) and Annandale (district 55), respectively, and the districts with largest and smallest values
of Ei, Glasgow (district 49) and Badenoch (district 17), respectively. The former are included as
obvious candidates for values that might be considered extreme. The latter are of interest because
under our model Ei is a key factor in determining the posterior variability of �i. Thus the posterior
distribution for �49 has a very narrow range; the 95 per cent central posterior interval is (0:30; 0:52).
District 17 and district 1 have much wider posterior intervals because they have smaller expected
counts.
The results in Table II indicate that Skye-Lochalsh (district 1) has an extremely high relative

risk. The central 95 per cent posterior interval for the relative risk parameter is (3.0, 11.1). Part of
this relative risk is associated with the covariate, however the posterior distribution of e−(X�)1�1,
the relative risk unrelated to the covariate, is also quite high, with central 95 per cent posterior
interval (1.8,8.4). It is natural to wonder if the extreme risk is an indication of model failure.
In the remaining sections we develop methods for assessing the �t of the model, especially for
determining whether observed extreme values are too large to have occurred by chance under the
model.
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Figure 1. Posterior distributions of relative risk parameters, �i, for four districts estimated using 1000 real-
izations simulated from the posterior distribution. Distributions are presented on a common horizontal scale.
Observed values of the standardized mortality rate, SMRi = Yi=Ei; are indicated by a solid vertical line on
each plot. (a) District 1, Skye-Lochalsh, has the largest SMRi (and a fairly small Ei). (b) District 55,
Annandale, has the smallest SMRi. (c) District 49, Glasgow, has the largest Ei. (d) District 17, Badenoch,

has the smallest Ei.
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Table I. Scotland lip cancer data.

ID District name Y E SMR X Neighbours

1 Skye-Lochalsh 9 1.38 6.52 16 5,9,11,19
2 Ban�-Buchan 39 8.66 4.50 16 7,10
3 Caithness 11 3.04 3.62 10 6,12
4 Berwickshire 9 2.53 3.56 24 18,20,28
5 Ross-Cromarty 15 4.26 3.52 10 1,11,12,13,19
6 Orkney 8 2.40 3.33 24 3,8
7 Moray 26 8.11 3.21 10 2,10,13,16,17
8 Shetland 7 2.30 3.04 7 6
9 Lochaber 6 1.98 3.03 7 1,11,17,19,23,29
10 Gorden 20 6.63 3.02 16 2,7,16,22
11 Western Isles 13 4.40 2.95 7 1,5,9,12
12 Sutherland 5 1.79 2.79 16 3,5,11
13 Nairn 3 1.08 2.78 10 5,7,17,19
14 Wigtown 8 3.31 2.42 24 31,32,35
15 NE Fife 17 7.84 2.17 7 25,29,50
16 Kincardine 9 4.55 1.98 16 7,10,17,21,22,29
17 Badenoch 2 1.07 1.87 10 7,9,13,16,19,29
18 Ettrick 7 4.18 1.67 7 4,20,28,33,55,56
19 Inverness 9 5.53 1.63 7 1,5,9,13,17
20 Roxburgh 7 4.44 1.58 10 4,18,55
21 Angus 16 10.46 1.53 7 16,29,50
22 Aberdeen 31 22.67 1.37 16 10,16
23 Argyll-Bute 11 8.77 1.25 10 9,29,34,36,37,39
24 Clydesdale 7 5.62 1.25 7 27,30,31,44,47,48,55,56
25 Kirkcaldy 19 15.47 1.23 1 15,26,29
26 Dunfermline 15 12.49 1.20 1 25,29,42,43
27 Nithsdale 7 6.04 1.16 7 24,31,32,55
28 East Lothian 10 8.96 1.12 7 4,18,33,45
29 Perth-Kinross 16 14.37 1.11 10 9,15,16,17,21,23,25,26,34,43,50
30 West Lothian 11 10.20 1.08 10 24,38,42,44,45,56
31 Cumnock-Doon 5 4.75 1.05 7 14,24,27,32,35,46,47
32 Stewartry 3 2.88 1.04 24 14,27,31,35
33 Midlothian 7 7.03 1.00 10 18,28,45,56
34 Stirling 8 8.53 0.94 7 23,29,39,40,42,43,51,52,54
35 Kyle-Carrick 11 12.32 0.89 7 14,31,32,37,46
36 Inverclyde 9 10.10 0.89 0 23,37,39,41
37 Cunninghame 11 12.68 0.87 10 23,35,36,41,46
38 Monklands 8 9.35 0.86 1 30,42,44,49,51,54
39 Dumbarton 6 7.20 0.83 16 23,34,36,40,41
40 Clydebank 4 5.27 0.76 0 34,39,41,49,52
41 Renfrew 10 18.76 0.53 1 36,37,39,40,46,49,53
42 Falkirk 8 15.78 0.51 16 26,30,34,38,43,51
43 Clackmannan 2 4.32 0.46 16 26,29,34,42
44 Motherwell 6 14.63 0.41 0 24,30,38,48,49
45 Edinburgh 19 50.72 0.37 1 28,30,33,56
46 Kilmarnock 3 8.20 0.37 7 31,35,37,41,47,53
47 East Kilbride 2 5.59 0.36 1 24,31,46,48,49,53
48 Hamilton 3 9.34 0.32 1 24,44,47,49
49 Glasgow 28 88.66 0.32 0 38,40,41,44,47,48,52,53,54
50 Dundee 6 19.62 0.31 1 15,21,29
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Table I. Continued.

ID District name Y E SMR X Neighbours

51 Cumbernauld 1 3.44 0.29 1 34,38,42,54
52 Bearsden 1 3.62 0.28 0 34,40,49,54
53 Eastwood 1 5.74 0.17 1 41,46,47,49
54 Strathkelvin 1 7.03 0.14 1 34,38,49,51,52
55 Annandale 0 4.16 0.00 16 18,20,24,27,56
56 Tweeddale 0 1.76 0.00 10 18,24,30,33,45,55

Table II. Posterior inference for � and other parameters of the Poisson-log-Gaussian model
for the Scotland lip cancer data.

Parameter Posterior distribution Parameter Posterior distribution
2.5% Median 97.5% 2.5% Median 97.5%

�1 3.01 6.14 11.14 �29 0.76 1.16 1.70
�2 2.93 4.08 5.44 �30 0.54 0.97 1.61
�3 1.55 3.07 5.40 �31 0.38 0.89 1.78
�4 1.76 3.42 5.94 �32 0.47 1.26 2.86
�5 1.82 3.15 4.98 �33 0.47 0.93 1.64
�6 1.61 3.25 5.85 �34 0.37 0.76 1.42
�7 1.93 2.81 4.04 �35 0.48 0.83 1.34
�8 1.09 2.50 4.90 �36 0.39 0.71 1.22
�9 1.03 2.70 5.29 �37 0.53 0.87 1.45
�10 1.83 2.89 4.18 �38 0.30 0.61 1.13
�11 1.41 2.58 4.18 �39 0.55 0.99 1.71
�12 0.95 2.69 5.44 �40 0.22 0.54 1.21
�13 0.68 2.52 6.28 �41 0.29 0.50 0.77
�14 1.13 2.30 4.26 �42 0.47 0.77 1.20
�15 1.11 1.79 2.83 �43 0.23 0.72 1.60
�16 1.05 1.99 3.30 �44 0.23 0.43 0.73
�17 0.46 1.83 5.13 �45 0.33 0.47 0.65
�18 0.59 1.29 2.68 �46 0.22 0.48 0.97
�19 0.83 1.52 2.71 �47 0.13 0.35 0.84
�20 0.68 1.36 2.58 �48 0.18 0.39 0.74
�21 0.84 1.32 2.07 �49 0.30 0.40 0.52
�22 1.05 1.43 1.96 �50 0.27 0.47 0.74
�23 0.65 1.15 1.88 �51 0.09 0.34 0.98
�24 0.44 0.94 1.81 �52 0.09 0.31 0.92
�25 0.68 1.03 1.51 �53 0.10 0.29 0.72
�26 0.59 0.95 1.50 �54 0.11 0.30 0.66
�27 0.48 0.99 1.79 �55 0.13 0.48 1.20
�28 0.55 0.99 1.65 �56 0.04 0.31 1.38

�2 1.23 2.23 4.18 �1 −0:899 −0:566 −0:209
� 0.040 0.146 0.174 �2 0.036 0.062 0.090

3. POSTERIOR PREDICTIVE MODEL CHECKING

3.1. Preliminary remarks

Model checking is a broad term that encompasses a large number of ideas for determining if
a model provides an adequate �t to a particular data set. One particularly powerful approach

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2377–2397



POSTERIOR PREDICTIVE MODEL CHECKS 2385

for checking the �t of a model is to embed the model inside a larger model by introducing
one or more additional parameters. It is then possible to �t the larger model and examine the
posterior distribution of the added parameters to determine if the existing model is adequate. If
these parameters do not di�er from their null value, often zero, then we might be content to use
the smaller model. In the disease mapping context, this approach could for example be used to
assess which of several potential covariates should be included in the �nal model.
An idea closely related to model checking is model selection, in which the goal is to select

the best of a set of models. The most common approach to model selection under the Bayesian
approach to inference relies on Bayes factors (reviewed for example by Kass and Raftery [23]).
Again, one can easily imagine taking this approach to select the best subset from among a given set
of covariates. Bayes factors can be used to compare the 2p models corresponding to the inclusion
or exclusion of each of p covariates.
In the present context, we assume that only a single model is being �t and thus do not consider

the use of Bayes factors. Instead we ask whether the proposed model �ts the observed data. It is
similar to a traditional signi�cance-testing approach in the sense that a speci�c alternative model is
not speci�ed. If test statistics or measures are constructed carefully, then a failure of the proposed
model may suggest some way of extending the model, but we assume that there are no speci�c
alternative models under consideration. The remainder of this section briey reviews posterior
predictive model checks and describes their application to disease mapping.

3.2. Posterior predictive model checks

The goal in model checking is to determine whether the observed data are representative of the
type of data we might expect under the model. Model �t can be assessed using draws from the
posterior predictive distribution [13; 15] to represent what we can expect under the model. Let Y rep

denote a replication of the data with the same (unknown) values of the parameters that produced
the data Y . The posterior predictive distribution of Y rep is de�ned as

p(Y rep |Y)=
∫
p(Y rep | �;Y)p(� |Y) d�=

∫
p(Y rep | �)p(� |Y) d�; (7)

where � is used as generic notation for all of the model parameters and the second equality
reects assumed conditional independence of Y rep and Y given the parameters. In practice, we
study the posterior predictive distribution via simulation. Draws from the posterior distribution of
� are typically available from the Markov chain Monte Carlo procedure described in Section 2.2.
Then a replicate data set is obtained from each draw of � using p(Y rep | �).
To assess the �t of the model we introduce T (Y ; �) as a discrepancy measure that is intended

to measure the �t of the model to the data. For example, T may be an overall measure of �t
or a measure designed to tell whether a particular source of variability is adequately addressed
by the model. Note that we do not restrict attention to test statistics in the formal sense; our
notation allows T to depend on the parameters and the data. The �t of the model with respect to
the discrepancy T is judged by comparing the posterior distribution of T (Y ; �) (recall that T is a
function of the parameters so it has a posterior distribution) to the posterior predictive reference
distribution T (Y rep; �). The joint posterior distribution of T (Y rep; �) and T (Y ; �) can be studied
empirically using simulations, with the simulations displayed in a scatter plot. If the points in the
scatter plot are far removed from the 45 degree line, then the data generated by the model do not
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resemble the observed data as regards the measure T . One summary of that joint distribution is
the posterior predictive p-value

ppp =Pr(T (Y rep; �)¿T (Y ; �) |Y) (8)

where the probability is calculated over the posterior distribution of (�;Y rep): Extremely small
posterior predictive p-values indicate a clear rejection of the current model. More moderate values
of ppp may cause us to question the model but whether the model is rejected or not may depend
on the ultimate purpose for which it will be used.
There is some simpli�cation in the model-checking procedure if the discrepancy measure T

does not depend on the model parameters, that is, if T is a test statistic in the traditional sense.
Then the observed value of the test statistic T (Y) is compared to the posterior predictive reference
distribution of T (Y rep), and the two-dimensional scatter plot used for comparison can be collapsed
to a one-dimensional histogram.
There are a number of alternative ways to de�ne replications for use in model checking; the

de�nition (7) is common but certainly not the only possibility. The key choices to be made in
de�ning replications are reviewed by Gelman et al. [15]. Here we briey review one alternative, the
model-checking approach described by Box [24], which relies on the prior predictive or marginal
distribution of the data Y . Under that approach, we compare test statistics T (Y) to the reference
distribution obtained by averaging over the prior distribution of the model parameters

p(Y rep)=
∫
p(Y rep | �)p(�) d�

A di�culty with this approach is that it requires proper prior distributions for all parameters.
Moreover, the common approach of using at prior distributions over wide ranges to approximate
improper prior distributions does not lead to useful prior predictive model checking. Since improper
prior distributions are common in statistical practice, including in the disease-mapping context, we
do not consider the prior predictive approach here.

3.3. Posterior predictive model checks for disease mapping

To carry out the posterior predictive approach for the disease mapping model of Section 2.1, we
need to de�ne suitable discrepancy measures. We mention a few possibilities here and demonstrate
them in the context of a real data set in Section 5. One class of discrepancy measures are omnibus
measures of �t. An example from this class is the discrepancy based on the usual chi-squared
goodness-of-�t measure

T (Y ; �)=
∑
i

(Yi − E(Yi|�))2
var(Yi|�) (9)

Classical goodness-of-�t tests for the null hypothesis that the data Y come from the given model
(for some �) are based on the test statistic obtained by replacing � in (9) with its maximum
likelihood or minimum chi-squared estimate. For these classical test statistics, there are analytic
results establishing the asymptotic distributions as chi-squared under the null hypothesis. The
posterior predictive distribution provides a suitable reference distribution for any sample size.
Omnibus discrepancy measures are useful but provide less power than measures designed to

test speci�c features of the data. It is di�cult to describe how such measures are constructed in
general because that will depend on the speci�cs of the application and the model [25–27]. To
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illustrate the idea for disease mapping models, we consider one hypothetical scenario. If it were
hypothesized that a covariate Z =(Z1; : : : ; Zn) omitted from the model were in fact important, then
the discrepancy, T (Y ; �)= corr(log Yi − logEi − (X�)i ; Zi), could be used to assess the correlation
of the unexplained variation in Y and Z . This is analagous to the use of residuals for assessing
the importance of a covariate in ordinary linear regression.

3.4. Discussion of the posterior predictive approach

Posterior predictive model checks have been criticized on several grounds. First, it has been pointed
out that the choice of discrepancy measures very often depends (at least implicitly) on the spec-
i�cation of alternative models and in those cases it might be better to actually �t the alternative
models [28]. In the hypothetical scenario of a missing covariate considered above for the disease
mapping model, the obvious alternative is a model that includes the covariate Z along with an
additional parameter (the regression coe�cient of Z). This alternative can be �t and the impor-
tance of the new parameter assessed by examining its posterior distribution. We have found that
posterior predictive checks are of most use when the computational cost of re�tting the alterna-
tive models (additional programming etc.) are prohibitive. A second aspect of posterior predictive
model checks is that they, or more precisely the posterior predictive p-values used to summa-
rize the checks, are quite conservative [15; 29; 30]. Finally, posterior predictive p-values do not
generally have a uniform distribution under the null hypothesis (that the data were generated by
the model in question), not even asymptotically [30; 31]. Recently Bayarri and Berger [30] have
developed a related approach based on posterior distributions that condition on only part of the
information in the data rather than using the full posterior distribution to de�ne the reference
distribution. Their p-values are uniformly distributed under the null and are not as conservative
as the posterior predictive p-values. However, their approach requires more calculation than the
posterior predictive approach described here and can be quite di�cult to apply for the kinds of
complex models that are most challenging to check in practice. Thus, despite their limitations,
posterior predictive model checks are practical and quite informative. They are at their best when
evaluating the �t of a single model developed for a particular application; see examples in Gelman
et al. [14; 15] and Glickman and Stern [25].

4. EVALUATING EXTREME OBSERVATIONS

4.1. Cross-validation

A key question in the analysis of disease incidence data is whether extreme relative risks indicate a
model failure. A posterior predictive model check using the obvious test statistic, T (Y)= maxi(Yi=
Ei); the maximum standardized morbidity ratio, is of limited use in addressing this question. This is
because a truly unusual value of Yi=Ei will likely inate the estimated value of variance parameters
in the model such that the posterior predictive distribution will generate simulated extrema that are
approximately as large as the observed maximum. Thus, a district with truly exceptional relative
risk might be missed by posterior predictive checks in the same way that an extremely inuential
point in a traditional regression analysis might not be uncovered just by looking at residuals.
The solution proposed here is similar to the solution in regression – we can apply a form of
cross-validation by leaving out the ith region while assessing whether Yi is unusual.
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Let Y−i denote the data vector without the count for the ith region and let p(� |Y−i) denote
the posterior distribution of � computed without the ith region. De�ne Y repi;−i as a predicted value
for the number of disease cases in region i based on the given model and data Y−i. Then we can
de�ne a cross-validation or leave-one-out posterior predictive distribution of Y repi;−i as

p(Y repi;−i |Y−i)=
∫
p(Y repi;−i | �) p(� |Y−i) d� (10)

The position of the observed value Yi within the leave-one-out posterior predictive distribution can
be used to assess the �t of the model. The leave-one-out posterior predictive distribution (10),
evaluated at the observed value Yi, is called the conditional predictive ordinate (CPO) by Geisser
[32]. A small CPO suggests an observed value that is unlikely under the model �t without the
observation in question. Of course, the calculation of the distribution (10) requires re�tting the
model to Y−i.
There is one issue that must be resolved before the de�nition (10) can be implemented for the

disease mapping model. Recall that the data Y are modelled conditional on the expected counts E.
If the data are internally standardized (recall from Section 2.1 that this means the data being
analysed were also used to create E), then leaving out one small area creates a situation in which
the expected counts are no longer the appropriate standardizations. It is necessary to recalculate
expected counts E−i when deleting area i; we cannot just delete the expected count for the ith
region because the remaining expected counts will not represent an internal standardization of Y−i.
If the raw data used to compute the original standardizations (2) in Section 2.1 are available, then
it is straightforward to recalculate the expected counts by developing new estimates for the risk
within each stratum without the data from area i. If the raw data are not available, then a simple
approximation is to multiply all the expected counts in the original vector E by a constant such
that the sum of the elements of Y−i is equal to the sum of the elements of E−i. The required
constant is

ci=

∑
j 6=i Yj∑
j 6=i Ej

(11)

This means that the expected count in area j when area i is deleted is Ej;−i= ciEj. Then the leave-
one-out posterior distribution p(� |Y−i) is the posterior distribution under the model of Section 2.1
except that the ith area is omitted and the expected counts E−i are used. The adjustment of the
expected counts also a�ects the �rst term in the integral (10) that de�nes the leave-one-out posterior
predictive distribution. The predictive distribution p(Y repi;−i|�) is a Poisson distribution with mean
�iciEi, because ciEi represents the best estimate of the expected count in region i when conditioning
on Y−i. It should be pointed out that if the data are externally standardized (recall that this means
E is constructed from information outside the current data set), then the expected counts do not
need to be recalculated when a region is dropped from the analysis.
In practice we might like to apply this approach to a large number of suspect regions. If �tting

the model requires a sophisticated MCMC simulation, then it may not be feasible to consider many
suspect regions. Carlin and Louis [18] describe one approach for calculating the CPO without
re�tting the model. They suggest using the approximation, p(�|Y) ≈ p(�|Y−i); unless Yi is an
extreme outlier. Of course this approximation is not appropriate here since we are hoping to
identify extreme outliers. There is an additional di�culty with this approximation. In models like
the disease mapping model, where there is one parameter (�i) corresponding directly to each
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observed count (Yi), the posterior mean for a given �i will be a compromise between the observed
count and the expected count under the spatial regression model. Consequently, assessing the �t
of the model based on the approximation will tend to be quite conservative in that all CPOs are
reasonably large. In the remainder of this section, we describe two approximations that perform
better while still not requiring us to reanalyse the data without region i. Both approaches reweight
the posterior simulations from the complete data analysis to approximate the posterior distribution
without the ith region.

4.2. Importance weighting

Let �1; : : : ; �M denote a collection of M posterior simulations from the complete data posterior
distribution, p(� |Y). The importance ratio for the jth posterior simulation, when we are approx-
imating the posterior distribution p(� |Y−i); is de�ned as

w−i(�j)=
p(�j |Y−i)
p(�j |Y)

∝
∏n
k=1; k 6=ip(Yk | ciEk)∏n
k=1p(Yk |Ek)

; j=1; : : : ; M (12)

where the numerator and the denominator of the �nal ratio are products of Poisson densities. The
prior distribution is the same in numerator and denominator and cancels in forming the importance
ratio. The importance ratios are only determined up to a multiplicative constant because the nu-
merator and denominator have di�erent normalizing constants. The importance ratios can be used
to compute estimates of various summaries of the posterior distribution without small area i. For
example, the posterior mean of � conditional on Y−i would be estimated as the weighted aver-
age of the posterior draws with importance ratios used as weights, (

∑
j �jw−i(�j))=(

∑
j w−i(�j)).

Similarly, the importance-weighted CPO estimate is

∑M
j=1 Pr(Y

rep
i;−i= Yi|�j)w−i(�j)∑M
j=1 w−i(�j)

: (13)

The conditional probability in the CPO estimate is easily calculated using the fact that Y repi;−i has a
Poisson distribution with mean equal to ciEi multiplied by the ‘�i’ component of �j. We can also
compute estimates of Pr(Y repi;−i ¡ Yi |Y−i) and Pr(Y repi;−i ¿ Yi |Y−i) to assess whether replicate data
tend to be larger or smaller than the observed value.

4.3. Importance resampling

Importance weighting can be used to approximate the posterior expected value of any function
of the parameters conditional on all of the data except the count from region i. It is sometimes
convenient to have a set of simulations to approximate a posterior distribution, which allows one
to obtain all manner of posterior summaries, not just expectations. The importance resampling
algorithm of Rubin [33; 34] uses the importance weights {w−i(�j): j=1; : : : ; M}, to generate such
simulations. The algorithm can be expressed simply in two steps:

1. De�ne �j =w−i(�j)=
∑M

j=1 w−i(�j); for j=1; : : : ; M .
2. From the orginal sample, {�j: j=1; : : : ; M}, select a subsample of size L without replacement
using probabilities �=(�1; : : : ; �M ).
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The resulting subsample represents an approximation of the desired posterior distribution,
p(� |Y−i). The samples are taken without replacement so that each of the posterior simulations
appears at most once in the �nal subsample. This a�ords a measure of protection in case one of
the original posterior draws ends up with very large proportion of the total importance weight.

4.4. Discussion of cross-validation

Cross-validation is an old and valuable idea. The preceding sections demonstrate how to carry
out cross-validation in the disease mapping context. Separate reanalysis of the data after delet-
ing a single case is possible but requires care when the data have been internally standardized.
In situations where data analysis is time-consuming or the number of small areas is large, it may
be desirable to avoid the complete reanalysis of the data. Importance weighting and importance
resampling provide approximations to the desired posterior distribution. The accuracy of impor-
tance weighting and importance resampling approximations depend on how great the change in the
posterior distribution is when region i is eliminated. The distribution of the importance weights
provides some, but not perfect information, about this. A heavily skewed distribution of importance
weights (dominated perhaps by a small number of extreme values) will tend to produce unreli-
able results. In that case, the importance-weighted analysis serves primarily to identify a subset of
potentially unusual observations – a complete reanalysis would be required to fully assess these
regions. Importance resampling provides a bit of protection in cases where the distribution of im-
portance ratios is extremely skewed, because individual posterior simulations appear at most once
in the importance-weighted subsample and thus one large ratio will not dominate the calculation.
Of course, in that case, the importance-weighted subsample represents a distribution that is in-
termediate between the complete-data posterior distribution p(�|Y) and the target leave-one-out
posterior distribution p(� |Y−i).

5. MODEL CHECKING FOR THE SCOTLAND LIP CANCER DATA

5.1. Overall measure of �t

The overall measure of �t (9) from Section 3.3 was computed for 1000 simulations from the
posterior distribution of � and the posterior predictive distribution of Y rep. The joint distribution
of T (Y ; �) and T (Y rep; �) is displayed in Figure 2(a). The points appear to be well scattered
about the 45 degree line suggesting no evidence of lack of �t. The upper tail area probability,
Pr(T (Y rep; �)¿T (Y ; �)|Y); is estimated as 0.38.
For purposes of illustration, we have also �t the clearly inferior simple Poisson regression

model to the Scotland lip cancer data; that model corresponds to taking �2 = 0 and �=eX�. The
same discrepancy measure is used to evaluate the �t of this model in Figure 2(b). There the
observed values (horizontal axis) are extremely large relative to what we would expect to see
under the model. The tail area probability estimate would be 0.00 suggesting the model could
not have generated the type of data we have observed. The solution of course is to introduce
extra-Poisson variation, and this is precisely what the Poisson-log-Gaussian model does. Note that
this diagnostic is quite similar to traditional methods used to check for overdispersion in Poisson
regression models. We also note that the vertical scale in both diagnostic plots is centred on values
near 56 which corresponds roughly to the expected value of the asymptotic reference distribution
for the classical chi-squared goodness-of-�t test.
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Figure 2. Scatter plots of the joint posterior distribution of the chi-squared discrepancy
measure evaluated at the posterior predictive replicate Y rep and the observed data Y :
(a) for the Poisson-log Gaussian model; (b) for a Poisson regression model (�2 = 0).

5.2. Extreme values

Figure 3 provides a histogram of the posterior predictive distribution for the maximum SMRi based
on the analysis of the entire data set. The distribution of the maximum SMRi has a number of
peaks because it is the maximum among a set of ratios Yi=Ei, where the Ei are considered �xed
and the Yi are restricted to be integers. Note that the observed maximum is not terribly unusual;
54 per cent of the posterior predictive replications have maximum SMRi greater than the observed
maximum and another 7 per cent have maximum SMRi equal to the observed maximum. This
result was anticipated by our discussion at the beginning of Section 4.1. A similar check based on
the minimum SMRi indicates that the observed minimum SMRi (zero) is not at all unexpected; a
minimum SMRi of zero occurs in 96 per cent of the posterior predictive replications. This is not
surprising given the large number of regions with small expected counts.
We now consider our cross-validation posterior predictive approach to assessing the �t of the

model to individual observations. For several quantities of interest we present results based on the
original analysis of all 56 districts along with cross-validation results leaving out individual districts.
Three di�erent computational approaches described in Section 4 are used to obtain the cross-
validation posterior distribution: a complete reanalysis of the data without the district in question
(Section 4.1); an importance weighting approximation (Section 4.2); and an importance resampling
approximation (Section 4.3). The most accurate approach is to obtain the cross-validation posterior
distribution without a given district by repeating the Bayesian analysis of the Scotland lip cancer
data described in Section 2, except that we leave out the district in question and adjust the expected
counts as described in Section 4.1. The importance weighting estimates for the quantities of interest
are obtained by reweighting the 1000 posterior draws from the complete data posterior, p(�|Y),
as described in Section 4.2. For importance resampling, the algorithm of Section 4.3 was applied
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Figure 3. Posterior predictive distribution of the maximum SMRi with a vertical line
indicating the observed maximum.

with an initial sample of 5000 posterior draws (we supplemented the original simulation which
contained only 1000 posterior draws) and a subsample of size 500.
Estimates of the posterior mean of the relative risks for a subset of the regions are provided in

Table III. In the �rst two columns, posterior means are reported for the complete data analysis and
for the leave-one-out reanalysis of the data. The 15 districts in Table III include the four districts
identi�ed earlier (see Figure 1) as being of interest, along with others for which large changes
were observed. There are a number of large di�erences between the complete data analysis and the
leave-one-out reanalysis. Districts 2, 3, 11 and 15 exhibit much lower mean relative risks when
the model is re�t without the district in question, and districts 17, 42, 55 and 56 have much higher
mean relative risks when the model is re�t without the district in question. Especially noteworthy
is the large increase for the posterior mean of �17 when the data are reanalysed without district
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Table III. Posterior mean of relative risk for selected districts under the complete data analysis, and esti-
mated posterior means for the leave-one-out analyses using importance weights and importance resampling.

ID District name Posterior mean of relative risk �i

Complete data Leave-one-out

Reanalysis Importance weights Importance resample

1 Skye-Lochalsh 6.37 8.80 6.45 6.10
2 Ban�-Buchan 4.10 2.14 3.19 3.74
3 Caithness 3.18 1.70 1.93 2.54
11 Western Isles 2.63 1.66 0.85 2.28
15 NE Fife 1.83 1.07 1.26 1.52
17 Badenoch 2.07 9.44 2.42 2.39
26 Dunfermline 0.97 0.59 0.63 0.80
38 Monklands 0.64 0.42 0.40 0.49
42 Falkirk 0.78 1.78 1.16 1.03
45 Edinburgh 0.47 0.63 0.65 0.54
49 Glasgow 0.41 0.49 0.48 0.43
50 Dundee 0.48 0.77 0.66 0.60
54 Strathkelvin 0.32 0.55 0.44 0.44
55 Annandale 0.53 2.12 1.24 0.90
56 Tweeddale 0.41 2.02 0.79 0.70

17; one possible explanation is that this district has the lowest expected count and thus its relative
risk parameter has the greatest variability according to our model. With the exception of district
17, the results in Table III look about as they should; the posterior mean of the relative risk based
on the complete data analysis is heavily inuenced by the data from that region (as it should
be!), with the model providing some smoothing of risks over nearby regions, whereas the leave-
one-out reanalysis ignores the information from the region under consideration. The predictive
distributions for the disease counts in the regions are much more informative than the posterior
means; we examine these below.
One additional use of Table III is that it allows us to compare the results obtained using the

approximations to that obtained by actually analysing the data without the region in question.
The importance weighting and importance resampling results are generally intermediate between
the complete data analysis and the results obtained by reanalysing the data without a given region.
This suggests that the approximations may be useful for identifying those regions worthy of further
study, but may not be useful for providing accurate estimates of what happens to the posterior
distribution of individual parameters when a region is removed. The distribution of the logarithms
of the importance weights for four of the leave-one-out analyses are shown in Figure 4. Of these,
none seems very highly skewed. In the case of district 49, Glasgow, one of the 1000 posterior
samples, has importance weight equal to 27 per cent of the total; however, the importance-weighted
estimates are accurate in that case because the posterior mean does not change much.
Table IV gives summaries for leave-one-out predictive distributions of Y repi;−i, the count in dis-

trict i conditional on the data excluding that district, for the same 15 districts. In particular, we
calculate the probability that Y repi;−i is less than, equal to, or greater than the observed count Yi. We
briey review how these quantities are estimated under the di�erent approaches to cross-validation
using the ‘equal to’ case, that is, the CPO, as an illustration. For the complete reanalysis without
district i, we have available a sample from the posterior distribution of the relative risk parameter
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Figure 4. Histogram of the logarithms of the importance weights for leave-one-out analyses. (a) District 1,
Skye-Lochalsh, has the largest SMRi. (b) District 55, Annandale, has the smallest SMRi. (c) District 49,

Glasgow, has the largest Ei. (d) District 17, Badenoch, has the smallest Ei.

�i conditional on Y−i. If we denote this sample as �
(1)
i ; : : : ; �

(M)
i , then the CPO is estimated as∑M

j=1 Pr(Y
rep
i;−i = Yi | �( j)i )=M with the probabilities computed from the assumed Poisson distribution.

The importance-weighted estimate of the CPO is computed via (13) of Section 4.2. That formula
uses the posterior draws of �i from the complete data analysis, and computes a weighted average
of Poisson probabilities. The importance-resampled estimate of the CPO is a simple average of
Poisson probabilities, using the 500 resampled posterior draws of �i.
The leave-one-out estimates of the posterior distribution for Y repi;−i, especially at the bottom of the

table, give us reason to be concerned about the �t of the model. There are a number of districts
for which the leave-one-out analyses suggest observed values are smaller than would be expected
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Table IV. Posterior predictive probability distributions for replicate data Y rep.

if the district followed the same model as the other districts. This includes the districts 42, 45, 49
and 50 which have four of the six largest expected counts; districts 45 and 49 correspond to the
two biggest urban centres in Scotland. Hence a modi�cation of the model that incorporates the
degree of urbanization of a district might be warranted. The approximations (importance weighting
and importance resampling) to the leave-one-out reanalysis seem to perform quite well in Table IV
even though they were not terribly reliable for the posterior means of the relative risk parameters.
Although not directly comparable to the leave-one-out reanalyses and approximations, we also

present results for the complete data analysis. There we are actually computing the posterior
predictive distribution of Y repi based on analysis of all of the data. As one would expect, the
complete-data estimates of the posterior predictive distribution for Y repi suggest a better �t than
the leave-one-out estimates of the posterior predictive distribution of Y repi;−i. As explained earlier,
the estimated relative risk parameters �i, and hence the predictive distribution of Y

rep
i , are heavily

inuenced by the observed Yi and thus the predictive distribution will tend to generate values like
the observed Yi. The leave-one-out analyses represent a more reasonable attempt to assess whether
a district is unusual. Incidentally, the complete data results can also be viewed as the leave-one-
out results that would be obtained if we accept the crude approximation p(�|Y) ≈ p(�|Y−i). The
results in Table IV suggest that this is a poor idea.

6. CONCLUSIONS

Hierarchical models are commonly used to provide smoothed estimates of small area disease risks.
Given the political and epidemiological importance of the estimated risks, it is important to check
the �t of the model to the data. This paper describes the posterior predictive approach for model
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checking in the context of disease mapping models, where the data are disease counts from n small
areas. Extreme values are of great interest in disease mapping because the associated areas can then
be examined for factors that may be associated with increased (or decreased) risk. Just examining
the posterior distribution of the relative risk parameters (or the posterior predictive distribution
of replicate data) can be misleading in these cases because the posterior distribution tries to �t
the observed data and hence will not easily identify outliers. We propose that a cross-validation
posterior predictive distribution, conditional on all of the data except small area i, be used to
determine whether the observed value in small area i is consistent with the model; i = 1; : : : ; n.
We also describe two approaches for constructing approximations to the cross-validation posterior
predictive distribution. Both approaches apply importance weights to the simulations from the
complete data posterior distribution. The approaches are demonstrated on the Scotland lip cancer
data where it does in fact seem that the model is not adequate; the high-population low-risk areas
do not appear to �t the model very well.

ACKNOWLEDGEMENTS

The authors are grateful to Deanne Reber for computing assistance. Cressie’s research was partially supported
by the Environmental Protection Agency (CR822919-01-0) and the O�ce of Naval Research (N00014-99-
1-0214). Cressie and Stern’s research was supported by the National Cancer Institute (CA 78169-02). The
computing for this research was performed on equipment purchased with funds provided by an NSF SCREMS
grant award DMS-9707740.

REFERENCES

1. Tsutakawa RK, Shoop GL, Marienfeld CJ. Empirical Bayes estimation of cancer mortality rates. Statistics in Medicine
1985; 4:201–212.

2. Clayton D, Kaldor J. Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics
1987; 43:671–681.

3. Manton KG, Woodbury MA, Stallard E, Riggan WB, Creason, JP, Pellom AC. Empirical Bayes procedures for
stabilizing maps of U.S. cancer mortality rates. Journal of the American Statistical Association 1989; 84:637–650.

4. Besag J, York JC, Mollie A. Bayesian image restoration, with two applications in spatial statistics (with discussion).
Annals of the Institute of Statistical Mathematics 1991; 43:1–59.

5. Mollie A, Richardson S. Empirical Bayes estimates of cancer mortality rates using spatial models. Statistics in Medicine
1991; 10:95–112.

6. Cressie N. Smoothing regional maps using empirical Bayes predictors. Geographical Analysis 1992; 24:75–95.
7. Clayton, D, Bernardinelli L. Bayesian methods for mapping disease risk. In Geographical and Environmental
Epidemiology: Methods for Small-Area Studies, Elliot P, Cuzick J, English D, Stern R (eds). Oxford University
Press: London, 1992; 205–220.

8. Bernardinelli L, Clayton D, Montomoli C. Bayesian estimates of disease maps: How important are priors? Statistics
in Medicine 1995; 14:2411–2431.

9. Stern HS, Cressie N. Bayesian and constrained Bayesian inference for extremes in epidemiology. In 1995 Proceedings
of the Section on Epidemiology. American Statistical Association: Alexandria, 1995; 11–20.

10. Stern HS, Cressie N. Inference for extremes in disease mapping. In Disease Mapping and Risk Assessment for Public
Health; Lawson A, Biggeri A, B�ohning D, Lesa�re E, Viel J-F, Bertollini R (eds). Wiley: Chichester, 1999; 63–84.

11. Waller LA, Carlin BP, Xia H, Gelfand AE. Hierarchical spatio-temporal mapping of disease rates. Journal of the
American Statistical Association 1997; 92:607–617.

12. Knorr-Held L, Besag J. Modelling risk from a disease in time and space. Statistics in Medicine 1998; 17: 2045–2060.
13. Rubin DB. Bayesianly justi�able and relevant frequency calculations for the applied statistician. Annals of Statistics

1984; 12:1151–1172.
14. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. Chapman and Hall: London, 1995.
15. Gelman A, Meng X-L, Stern HS. Posterior predictive assessment of model �tness via realized discrepancies (with

discussion). Statistica Sinica 1996; 6:733–807.
16. Cressie NAC. Statistics for Spatial Data, revised edition. Wiley: New York, 1993.
17. Besag J. Spatial interaction and the statistical analysis of lattice systems (with discussion). Journal of the Royal

Statistical Society; Series B 1974; 36:192–236.

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2377–2397



POSTERIOR PREDICTIVE MODEL CHECKS 2397

18. Carlin BP, Louis TA. Bayes and Empirical Bayes Methods for Data Analysis. Chapman and Hall: London, 1996.
19. Gilks WR, Richardson S, Spiegelhalter DJ (eds). Markov Chain Monte Carlo in Practice. Chapman and Hall: London,

1996.
20. Gelman A, Rubin D. Inference from iterative simulation using multiple sequences (with discussion). Statistical Science

1992; 7:457–511.
21. Breslow NE, Clayton DG. Approximate inference in generalized linear mixed models. Journal of the American

Statistical Association 1993; 88:9–25.
22. Mantel N, Stark CR. Computation of indirect-adjusted rates in the presence of confounding. Biometrics 1968; 24:997–

1005.
23. Kass RE, Raftery AE. Bayes factors. Journal of the American Statistical Association 1995; 90:773–795.
24. Box GEP. Sampling and Bayes’ inference in scienti�c modelling and robustness. Journal of the Royal Statistical

Society; Series A 1980; 143:383–430.
25. Glickman ME, Stern HS. A state-space model for National Football League (NFL) scores. Journal of the American

Statistical Association 1998; 93:25–35.
26. Boscardin WJ, Gelman A. Bayesian regression with parametric models for heteroscedasticity. Advances in Econometrics

1996; 11A:87–109.
27. Gelman A, Meng X-L. Model checking and model improvement. In Practical Markov Chain Monte Carlo, Gilks

WR, Richardson S, Spiegelhalter DJ (eds). Chapman and Hall: New York, 1996, 189–201.
28. Draper D. Comment: Utility, sensitivity analysis, and cross-validation in Bayesian model-checking, discussion of A.

Gelman, X.-L. Meng, H. Stern, Posterior predictive assessment of model �tness via realized discrepancies. Statistica
Sinica 1996; 6:760–767.

29. Rubin DB, Comment: On posterior predictive p-values, discussion of A. Gelman, X.-L. Meng, H. Stern,
Posterior predictive assessment of model �tness via realized discrepancies. Statistica Sinica 1996; 6:787–792.

30. Bayarri MJ, Berger JO. P-values for composite null models. Technical Report, Institute of Statistics and Decision
Sciences, Duke University, 1999.

31. Robins JM, van der Vaart A, Ventura V. The asymptotic distribution of P-values in composite null models. Technical
Report, Department of Epidemiology, Harvard School of Public Health, 1999.

32. Geisser S. Predictive Inference: An Introduction. Chapman and Hall: London, 1993.
33. Rubin DB, A noniterative sampling=importance resampling alternative to the data augmentation algorithm for creating

a few imputations when the fractions of missing information are modest: the SIR algorithm, discussion of M.A. Tanner
and W.H. Wong, The calculation of posterior distributions by data augmentation. Journal of the American Statistical
Association 1987; 82:543–546.

34. Rubin DB. Using the SIR algorithm to simulate posterior distributions. In Bayesian Statistics 3; Bernardo JM, DeGroot
MH, Lindley DV, Smith AFM (eds). Oxford: New York, 1988; 395–402.

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2377–2397


