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1. Introduction

There has been a growing recognition of the need for nonstationary spatial covariance func-

tions in a variety of disciplines. The atmospheric and environmental sciences are two obvious

areas of application; for example, Holland, et al. (2003) review the use of nonstationary spatial

covariance functions for the statistical analysis of air quality data. In machine learning, Gaussian

process models provide a popular approach to nonparametric regression (see Seeger (2004) and

the references therein), and specification of the covariance structure is obviously critical in this

setting. Paciorek and Schervish (2004a) discuss the use of nonstationary models for Gaussian

process regression. Since regression models can have any number of regressors, there is a need for

models for valid nonstationary spatial covariance functions in arbitrary dimensions. For both ease

of computation and interpretation, it is helpful to have explicit expressions for these covariance

functions.

Paciorek (2003) (see also Paciorek and Schervish (2004a,b)) describe a method for pro-

ducing explicit expressions for valid spatial covariance functions with locally varying geometric

anisotropies. However, this approach does not allow one to vary other aspects of the covariance

structure spatially, such as the differentiability of the process or the index of long range depen-

dence. By using spatially varying spectra, Pintore and Holmes (2004) demonstrate that one can

get explicit spatial covariance functions whose degree of differentiability varies in space. Section 2

shows how these two ideas can be combined to produce very flexible classes of explicit nonstationary

spatial covariance functions.

Higdon (1998) and Fuentes (2002) describe methods for generating nonstationary covariance

functions as integrals, but these integrals generally have to be carried out numerically. Indeed,

the key insight in Paciorek (2003) is that there is a class of models for which the integrations

required by Higdon (1998) can be carried out analytically. Nychka, Wikle and Royle (2002) describe

a wavelet approach to producing nonstationary spatial covariance functions, but although the

wavelet approach leads to fast computations, it produces covariance functions that are sums over

a large number of terms. Another approach to producing explicit covariance functions with locally

varying geometric anisotropies is to use spatial deformations (Sampson and Guttorp 1992, Perrin

and Senoussi 2000, Sampson, Damian and Guttorp 2001, Schmidt and O’Hagan 2003, Clerc and

Mallat 2003). As with Paciorek’s (2003) method, spatial deformations could be combined with

spatially varying spectra to obtain a broad class of explicit nonstationary covariance functions.
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Section 3 briefly compares these approaches and discusses some potential areas of application and

limitations of the models given in Section 2.

2. Main Result

The following theorem gives a representation for a broad class of valid covariance functions for

random fields on Rp. We will call a real function R on Rp×Rp a covariance function if R(x,x) < ∞
for all x ∈ Rp and if it assigns nonnegative values to all quadratic forms: for all finite n, all x1, . . .xn

in Rp and all real scalars a1, . . . , an,
∑n

i,j=1 aiajR(xi,xj) ≥ 0.

Theorem 1. Suppose Σ is a mapping from Rp to positive definite p × p matrices, µ is

a nonnegative measure on [0,∞), and for each x ∈ Rp, g(·;x) ∈ L2(µ). Defining Σ(x,y) =
1
2Σ(x) + 1

2Σ(y) and Q(x,y) = (x− y)′Σ(x,y)−1(x− y),

R(x,y) =
|Σ(x)|1/4|Σ(y)|1/4

|Σ(x,y)|1/2

∫ ∞

0
e−wQ(x,y)g(w;x)g(w;y)µ(dw) (1)

is a covariance function.

Paciorek (2003) gives this result when g does not depend on x. Note that if c is a real-valued

function on Rp, then if R(x,y) is a covariance function on Rp × Rp, so is c(x)c(y)R(x,y).

Proof of Theorem 1. The proof follows closely that in Paciorek (2003, pp. 26–27).

First, note that R(x,x) =
∫∞
0 g(w;x)2µ(dw) < ∞ for all x since g(·;x) ∈ L2(µ). Next, define

Σi = Σ(xi), Σij = Σ(xi,xj) Qij = Q(xi,xj) and let Kw
i be the density of a multivariate normal

random vector with mean xi and covariance matrix (4w)−1Σi. Then, using a straightforward

convolution argument (Paciorek 2003, p. 27) for the second equality,

n∑

i,j=1

aiajR(xi,xj)

=
n∑

i,j=1

aiaj
|Σi|1/4|Σj |1/4

|Σij |1/2

∫ ∞

0
e−wQijg(w;xi)g(w;xj)µ(dw)

= πp/2
n∑

i,j=1

aiaj |Σi|1/4|Σj |1/4

∫ ∞

0

{∫

Rp

Kw
i (u)Kw

j (u)du
}

w−p/2g(w;xi)g(w;xj)µ(dw)

= πp/2

∫ ∞

0

∫

Rp

{ n∑

i=1

ai|Σi|1/4Kw
i (u)g(w;xi)

}2

duw−p/2µ(dw),

which is nonnegative, proving that R assigns nonnegative values to all quadratic forms.
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The Matérn class of covariance functions is widely used to model stationary and isotropic

spatial processes (Stein, 1999) and, for interpoint distance d and positive parameters φ, ν and α, is

given by φMν(αd) = φ(αd)νKν(αd), where Kν is a modified Bessel function of order ν. A process

with this covariance function is m times mean square differentiable in any direction if and only if

ν > m. Take µ(dw) = w−1e−1/(4w)dw, g(w;x) = w−ν(x)/2 and assume ν(x) > 0 for all x, so that g

satisfies the conditions of Theorem 1. Then for Σ positive definite-valued and c real-valued, using

(3.471.9) in Gradshteyn and Ryzhik and absorbing |Σ(x)|1/4 into c(x),

R(x,y) =
c(x)c(y)
|Σ(x,y)|1/2

M{ν(x)+ν(y)}/2

(
Q(x,y)1/2

)
(2)

is a covariance function on Rp × Rp for all p. Paciorek and Schervish (2004a,b) give the special

case when ν is constant in x and Pintore and Holmes (2004) essentially give the special case when

Σ is constant in x. Equation (2) gives a single model that allows for spatially varying geometric

anisotropies and ranges (through Σ) and spatially varying degrees of differentiability (through ν).

Thus, in terms of the local behavior of the process, (2) is an extremely flexible model.

In terms of long-range behavior, (2) is less flexible because all Matérn covariance functions

decay exponentially at large distances. Thus, for example, if c is bounded and ν and the eigenvalues

of Σ are bounded away from 0 and ∞ in x, then there exist positive constants a and b such that

R(x,y) ≤ ae−b|x−y| for all x and y. To generate models whose covariance functions decay more

slowly as |x − y| increases, take µ(dw) = w−1e−wdw and g(w;x) = wδ(x)/2, where δ(x) > 0

guarantees g(·;x) ∈ L2(µ). For Σ positive definite-valued and c real-valued, we have

R(x,y) =
c(x)c(y)

|Σ(x,y)|1/2{1 + Q(x,y)}{δ(x)+δ(y)}/2
(3)

is a covariance function on Rp × Rp for all p. Paciorek and Schervish (2004b) give (3) when δ is

constant. In the stationary case (c, δ and Σ constant), the process is long-range dependent if and

only if its autocovariance function is not absolutely integrable, which will hold here if and only if

δ ≤ p/2. It is not so obvious what one should mean by long-range dependence for nonstationary

processes, although Heyde and Yang (1997) give a definition for processes on the integers that can

be generalized to processes on Rp. Certainly, if in (3), the eigenvalues of Σ were bounded away

from 0 and ∞ and δ(x) ≤ p/2 for all x, one would want to call the resulting process long-range

dependent.
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Models of the forms (2) and (3) can be summed to obtain models with spatially varying

degrees of local and long-range behavior. Because models of the form (2) do not have long-

range dependence, one can change the functions ν and Σ in (2) without affecting the long-range

dependence of the process. Similarly, because all models of the form (3) correspond to processes

that are infinitely mean-square differentiable, one can change the functions δ and Σ in (3) without

affecting the differentiability of the process. However, it may be desirable to have a single model

that allows variation in both the long-term and local behavior of the process. Denoting interpoint

distance by d, Gneiting and Schlather (2004) note that the model (1 + dα)−β is a valid isotropic

autocovariance function in any number of dimensions for 0 < α ≤ 2 and β > 0, and that one can

achieve different degrees of both local behavior and long-range dependence through the choice of

α and β. However, the degrees of local behavior are more restricted than for the Matérn class in

that only nondifferentiable (α < 2) and infinitely differentiable (α = 2) processes are attainable.

Furthermore, since an explicit spectral representation for this class of covariance functions does not

appear to be available for arbitrary α, it is not clear how one would apply Theorem 1 to this class,

nor is it clear such an application would lead to explicit expressions for some class of nonstationary

processes in which, in some sense, α and β could vary spatially.

3. Discussion

Although a sum of models of the forms (2) and (3) provides an extensive range of possible

models for nonstationary covariance functions, it does have some limitations. Assuming Σ and

g are continuous in x, at least roughly, all models of the form given by Theorem 1 are locally

geometrically anisotropic; that is, are locally isotropic in a neighborhood of x after some affine

transformation of the coordinates depending on x. Such a restriction excludes, for example, models

with different degrees of differentiability in different directions, or models with local anisotropies

that are other than geometric. Another limitation of models obtained through Theorem 1 is the

ability to produce negative correlations. Indeed, if g does not depend on x, then R in (1) is

trivially nonnegative. When g does depend on x, one can get R(x,y) < 0 by, for example, taking

g(w;x) = −g(w;y). However, the fact that the ability to obtain negative correlations is tied to

the presence of a spatially varying spectrum may not always be desirable.

As noted in the introduction, spatial deformations provide an alternative to the approach in

Paciorek (2003) for producing spatially varying geometric anisotropies. For example, if D is an in-
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vertible mapping from Rp to Rp and ν is a positive function on Rp, thenM{ν(x)+ν(y)}/2(D(x), D(y))

is a covariance function on Rp × Rp that allows spatial variation in both the local smoothness and

the local anisotropy of the process. It would be interesting to study the relationship between these

covariance functions and those in (2), although either approach is likely to be sufficiently flexible

for many applications. However, it may be easier to think about how Σ, the positive definite matrix

valued function in (2), controls the strength of correlations, than the deformation D, especially

for the larger values of p that can occur in Gaussian process regression. For example, even if one

has a way to ensure D is invertible on the domain of interest, it may be difficult to keep track

of all interpoint distances induced by D and make sure that no such distances have been made

unintentionally too large or too small. Furthermore, Paciorek’s approach may be easier to apply

to parametric models for nonstationarity, such as when the strength of local dependence is related

to some known topographical feature. On the other hand, deformations can be applied to any

valid isotropic covariance function on Rp, whereas (1) with g constant implies that the underlying

isotropic covariance function (i.e., with Σ constant) be valid in any number of dimensions (Yaglom,

1987, p. 354). Nott and Dunsmuir (2002) describe an approach to extending a covariance structure

for a finite number of locations to a valid (generally) nonstationary covariance function on all of Rp

that could also be combined with spatially varying spectra. However, their approach seems more

geared towards fitting covariance structures to spatial data at a modest number of monitoring sites

with replicates in time rather than to producing models for covariance functions.

For spatial datasets of modest size, a model of the form (2) may provide too much flexibility

unless the forms of c, ν and Σ are severely constrained in some manner. For example, even in

the simple case where the random field is Gaussian with known mean, all three functions are

constant and Σ = θI, then the scalar parameters c and θ cannot be consistently estimated based

on observations in a bounded subset of Rp if p < 4 (Zhang 2004). Thus, if one allows c and Σ

to vary smoothly in space, even if ν is known and constant, one cannot hope to estimate both c

and Σ consistently based on observations from a single realization of the corresponding Gaussian

random field. Furthermore, in many applications, especially when the random field is observed with

nonnegligible measurement error, it may be difficult to estimate ν locally and one may then want

to simplify the model by assuming it is constant. However, in some cases, the local smoothness of a

spatial process may exhibit some simple spatial pattern. For example, Fang and Stein (1998) find

that the smoothness of longitudinal variations in total column ozone in the Earth’s atmosphere
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shows a clear dependence on latitude. Thus, although we may not often want to use models such as

(2) and (3) or sums of them in their full generality, it is useful to have models with such flexibility

that we can then specialize to meet the needs of any particular application.
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