
Journal of Health Economics 23 (2004) 1209–1236

Air pollution, health, and socio-economic status: the
effect of outdoor air quality on childhood asthma

Matthew J. Neidell∗

University of Chicago, CISES, 5734 S. Ellis Ave., Chicago, IL 60637, USA

Received 1 August 2003; received in revised form 1 April 2004; accepted 1 May 2004

Abstract

This paper estimates the effect of air pollution on child hospitalizations for asthma using naturally
occurring seasonal variations in pollution within zip codes. Of the pollutants considered, carbon
monoxide (CO) has a significant effect on asthma for children ages 1–18: if 1998 pollution levels
were at their 1992 levels, there would be a 5–14% increase in asthma admissions. Also, households
respond to information about pollution with avoidance behavior, suggesting it is important to account
for these endogenous responses when measuring the effect of pollution on health. Finally, the effect
of pollution is greater for children of lower socio-economic status (SES), indicating that pollution is
one potential mechanism by which SES affects health.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A primary objective of air quality policies around the world is to protect human health.
However, many critics argue that air quality standards are set somewhat arbitrarily with in-
conclusive evidence of the specific health benefits and with inadequate considerations of the
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costs to producers. Given that substantial costs to industry have been widely demonstrated,1

in order to determine optimal policy intervention it is crucial to identify the associated ben-
efits from improvements in air quality.

While many studies have focused on estimating a relationship between pollution and
health, they have largely neglected to consider that pollution exposure is endogenously
determined if individuals make choices to maximize their well being. People with high
preferences for clean air may choose to live in areas with better air quality. People can
respond to a wide range of readily available information on pollution levels by adjusting their
exposure. Failing to appropriately account for such actions can yield misleading estimates
of the causal effect of pollution on health.

This paper focuses on developing an empirical strategy for measuring the effect of pollu-
tion on health. Specifically, I look at the effect of air pollution on children’s hospitalization
for asthma. Childhood asthma is of particular interest for two reasons: (1) asthma is the lead-
ing chronic condition affecting children; and (2) current pollution standards are based on
adult health responses to pollution and children face a greater risk from pollution exposure
due to the sensitivity of their developing biological systems.

This study builds on earlier work in five ways. One, I develop a unique, monthly, zip
code level data set by matching information about all individual hospitalizations in Califor-
nia between 1992 and 1998 to ambient pollution levels, meteorological data, and various
demographic data. Two, I identify the effect of pollution using naturally occurring seasonal
variations within zip codes. Since zip codes are a finely defined geographic area and the
seasonal patterns in pollution are remarkably strong and diverse throughout California, this
controls for many confounding factors that might affect asthma hospitalization rates. Three,
I allow the effect of pollution to differ with the age of the child, as biological models suggest
it might. Four, I collect data about public announcements of “smog alerts” in order to show
empirically that it is important to account for the endogeneity of household responses to
pollution. Five, to assess if the effect of pollution varies across different segments of the
population, I allow the effect of pollution to differ with socio-economic status (SES), as
measured by education levels in the zip code.

The primary finding of this paper is that of the pollutants considered, carbon monoxide
(CO) has a significant effect on hospitalizations for asthma among children ages 1–18, while
none of the pollutants considered has a clear impact on hospitalizations for infants. This
discrepancy across age groups is possibly due to the complications inherent in diagnosing
asthma in infants or differing degrees of avoidance behavior by age. The decline in pollution
levels from 1992 to 1998 decreased asthma rates by between 5 and 14%, resulting in a savings
of approximately $5.2 million in hospital expenses for asthma admissions in California in
1998 alone.

A second finding is that families display avoidance behavior by responding to smog
alerts, indicating the importance of accounting for the endogeneity of family behavior
when measuring the causal effect of pollution on health. The announcement of smog alerts
decreases asthma hospitalizations by roughly 1%, while including these announcements
raises the effect of O3 on admissions, although O3 does not appear to significantly affect

1 See, for example,Greenstone (2002)for estimates on the costs of the Clean Air Acts on industrial activity in
the United States.
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admissions. This suggests that omitting avoidance behavior yields estimates that are a lower
bound of the biological effect of pollution on health.

Third, not only are the coefficients measuring the effect of pollution larger for low SES
children, but these children are also exposed to considerably higher levels of pollution. As a
result, they suffer greater harm from pollution, although higher pollution levels explain only
as much as 6% of the gap in admission rates for asthma. Although there are many remaining
factors for explaining this gap, this suggests that pollution is one potential mechanism for
the well-known relationship between SES and health—poorer families are unable to afford
to live in cleaner areas, and their children’s health suffers as a result.

The paper is laid out as follows. Section2 provides some background information on
asthma and its potential association with pollution. Section3 discusses the conceptual
framework and estimation strategy. Section4 describes the data used for the analysis.
Section5 presents the econometric results. Section6 concludes with a discussion.

2. Background

Approximately 5 million children in the United States have asthma. It is the leading
specific reason for school absence and the most frequent cause of pediatric emergency
room use and hospital admission (National Institute of Environmental Health Sciences,
1/2000). Asthma disproportionately attacks children of lower SES, and continues for most
well beyond childhood (American Academy of Pediatrics, 2000). Most disconcerting is that
reported asthma rates for children age 18 and younger have increased by more than 70%
from 1982 to 1994 (American Academy of Pediatrics, 2000)2.

Despite mounting public concern, the factors influencing this illness are not fully un-
derstood, especially for children. Medical research has demonstrated that asthma is both
a chronic and acute illness. In the chronic aspect, an individual’s airways are persistently
inflamed and their immune system is hyper-responsive, but the causes of this remain largely
unknown (American Lung Association, 2000). During an acute response, an irritant is in-
haled that causes three changes to occur: muscular bands around the bronchioles constrict,
the linings of the airway become inflamed, and excess mucus is produced. The irritants
are believed to cause this because, by being recognized by the immune system as for-
eign, immunoglobin E (IgE), an antibody, is produced in response. IgE binds with mast
cells—particular cells filled with chemical mediators, causing the release of some of the
mediators in the mast cells (American Academy of Pediatrics, 2000). As a result of these
changes in lung functioning, the airways are severely narrowed, and, by making it difficult
to breathe, may lead to an asthma attack.

While there are many potential irritants3, or asthma “triggers”, outdoor air pollution
has long been suspected a major culprit. Carbon monoxide is an odorless, colorless gas
that bonds with hemoglobin more easily than oxygen, so that it reduces the body’s ability
to deliver oxygen to organs and tissues. Although the biological plausibility of a direct
effect of CO on asthma is unlikely, because CO mainly comes from vehicle exhaust, a

2 There is, however, much debate regarding this apparent rise in asthma. I discuss this is more detail below.
3 These include include molds, pollens, animal dander, tobacco smoke, weather, and exercise.
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likely explanation is that CO functions as a proxy for vehicle emissions (U.S. EPA, 2000).
Nitrogen dioxide (NO2) is a brown, reactive gas that irritates the lungs and may lower
resistance to respiratory infections. Particulate matter (PM10), which can take many forms,
including ash and dust, is believed to cause the most damage from the smallest particles,
since they are inhaled deep into the lungs (U.S. EPA, 2003). The mechanisms through
which particles harm health are controversial, however the leading theory is that they cause
an inflammatory response, which weakens the immune system (Seaton, 1995). Ozone (O3),
the major component of urban smog, is a highly reactive compound that damages tissue,
reduces lung function, and sensitizes the lungs to other irritants. Motor vehicles are a major
source of PM10, NO2, and especially of CO; as much as 90% of CO in cities comes from
motor vehicle exhaust (U.S. EPA, 2000), while O3 is formed through reactions between
nitrogen oxides (such as NO2) and volatile organic compounds (which are found in auto
emissions, among other sources) in heat and sunlight.

Many researchers have attempted to estimate the link between these pollutants and child-
hood asthma, but with mixed results.4 Most studies have been short time-series that focus
on a given city and track the daily number of hospital or emergency room (ER) admissions
for asthma and the average daily levels of various criteria pollutants.5 A wide range of
estimated correlations between admissions for asthma and CO, O3, PM10, and NO2 have
been reported, with no clear patterns or magnitude of effects evident.6

Due to the inconclusive findings and the fact that ambient air pollution levels have
declined in most parts of the country while the reported incidence of asthma has risen7,
many researchers have begun to question the link between ambient air pollution and asthma
(von Mutius, 2000a, 2000b; Vacek, 1999; Duhme et al., 1998). For example, the Committee
on the Medical Effects of Air Pollution (Committee on the Medical Effects of Air Pollution,
2000) concluded that “overall evidence is small that non-biological outdoor air pollution
has an important effect on the initiation and [provocation] of asthma”, (2000). As a result,
alternative theories have sprung up recently. One theory proposes that children are “too
clean” because they often use antibiotics to combat minor illnesses. As a result, their immune
systems do not develop properly and attack many harmless substances that enter the body
(American Academy of Pediatrics, 2000). A second competing theory is that the changing
lifestyles of children—poorer diets, less exercise, more time indoors - has led to the increase
in asthma related illnesses (von Mutius, 2000a).

However, not all researchers have dismissed the role that pollution may play. There is
a debate as to whether asthma rates have actually increased. Better detection of asthma

4 Some representative studies includeDesqueyroux and Momas (1999), Gouveia and Fletcher (2000), Fauroux
(2000), Garty et al. (1998), Krupnick et al. (1990)andNorris et al. (1999).

5 Criteria pollutants are non-toxic air pollutants considered most responsible for urban air pollution and are
known to be hazardous to health. They include SO2, NO2, O3, CO, PM10, and lead.

6 Other studies that have attempted to link pollution and general health use data that follow the same individuals
over a short period of time to control for permanent health-related factors, such as smoking rates and exercise
habits (Alberini and Krupnick, 1998; Portney and Mullahy, 1986, 1990). However, most of these studies focus on
adults, and the results may not be directly applicable to children. Furthermore, a general limitation of these studies
is that, given the limited number of observations over a short period of time, it is unlikely that there is enough
variation in specific health outcomes, such as asthma, to obtain precise estimates.

7 See footnote 2.
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and different classifications of illness could explain some of the increases in individual and
doctor reports. For example, what was long labeled wheezy bronchitis is now classified
as asthma (Speizer, 2001). Recent expansions in Medicaid could also explain part of the
increase in reported cases – as children’s access to health care increases, there is a greater
chance of early detection and treatment.

Many researchers have also questioned the methodological approaches used to iden-
tify the relationship between pollution and asthma (Nystad, 2000; Eggleston et al., 1999;
von Mutius, 2000b; Bjorksten, 1999). Since air pollution is not randomly assigned, most
studies have been largely unsuccessful in disentangling pollution from other confounding
factors that affect health. Additionally, these studies do not account for direct responses to
ambient levels of pollution. Furthermore, these studies tend to group all children into just
one category, and we might expect a number of biological and behavioral factors to vary
for children of different ages. Lastly, most studies conduct single pollutant analyses, which
does not provide clear policy implications if pollutants are highly correlated.

A final reason to believe a connection between pollution and asthma might exist is that
studies with more convincing empirical designs have found consistent effects of pollution
on children’s health.Chay and Greenstone (2003)use declines in pollution that resulted
from the 1980–82 recessions and find a strong link between total suspended particles and
infant mortality. Since most infant mortality is due to respiratory failure, it is reasonable to
suspect that pollution could be related to other respiratory illnesses, such as asthma.Ransom
and Pope (1995)use changes in pollution that resulted from the opening and closing of a
steel mill due to a labor strike and find a large effect on bronchitis and asthma in children.
Their study, however, does not identify the effect of specific pollutants, only the effect of
the mill being opened or closed.8

3. Conceptual framework

One approach to understanding the impact of pollution on health would be to assume
that everyone is unaware of the amount of pollution in the air. Therefore, ambient levels of
pollution would serve as an unbiased proxy for an individual’s exposure to pollution and
pollution levels would not be correlated with any types of behavior. One could then estimate
a relationship between health and pollution by regressing health outcomes on ambient levels
of pollution as well as other exogenous factors that are related to both pollution and health,
such as weather conditions.

However, this approach is oversimplified because individuals can undertake avoidance
activities to reduce the effect of externalities, which makes an individual’s exposure to
pollution an endogenously determined variable.9 This introduces two issues. First, there
are many tools available to inform people when air pollution levels pose a threat to health.

8 Another study (Friedman et al., 2001) that attempts to use a “natural experiment” caused by changing traffic
patterns in Atlanta during the 1996 Olympics also does not identify the effects of particular pollutants. Moreover,
this study does not consider the changing behavior of families in response to the Olympics in general.

9 For a detailed description of avoidance (or averting) behavior, seeZeckhauser and Fisher (1976)orBresnahan
et al. (1997).
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Home devices, such as peak expiratory flow (PEF) meters, can be used to measure lung
functioning on a given day (if the individual already has a respiratory illness). California
State law requires the announcement of air quality episodes, or “smog alerts”, when pollution
levels are predicted to exceed certain limits (Air Resources Board, 1990). State and local
agencies are required to report a daily measure of air quality in large metropolitan areas,
with newspapers a common source (U.S. EPA, 1999a). Many regional air quality offices,
such as the California Air Resources Board, provide web pages with up-to-the-minute
pollution details and e-mail notifications of dangerous pollution levels.10 Many pollutants
are directly visible – on high-smog days in Los Angeles, whitish clouds often cover the
sky or a reddish-brown haze is visible around the horizon. If people directly respond to this
information, then ambient pollution levels will not accurately represent their exposure to
pollution.

A second issue arises because air quality, like many local public goods, is capitalized
into housing prices, making it an attribute of a home that people can demand (Chay and
Greenstone, 2000). Therefore, families with a higher value for cleaner air can locate in
areas with better air quality.11 These families may also make additional investments in their
children’s health – they may be less likely to smoke or more likely to seek preventative
health care and have an existing relationship with a doctor. As a result, there are many
confounding behavioral factors related to both pollution and health, making it difficult to
identify the effect of pollution on health.12

Additionally, parents’ investment decisions and pollution exposure may vary depending
on the health stock or age of their child. This could occur because some children face a
greater risk from the same exposure as other children or the costs to monitor behavior vary
by child or age. For example, it is not uncommon for parents to insist on keeping tobacco
smoke away from their infant, only to become more yielding as the child grows older,
suggesting avoidance behavior might be more actively undertaken for younger children.
Therefore, a specific child’s exposure to pollution is potentially related to both the family
specific endowment and type of care utilized.

These issues suggest that the ambient levels of pollution where a child lives are potentially
related to many broadly defined factors that are difficult to fully observe, and omitting them
from a regression could cause biased estimates of ambient pollution on asthma. I propose
to control for these variables using the following innovations. First, I look at the effect
of air pollution separately for children of different age groups. These groups correspond
with both biological development and the type of care that families typically display towards
children. I define the age categories of interest as follows: children age 0–1 (lung “branching”
occurring at rapid rate; infants most protected by parents and most likely to use hospital
for illness); 1–3 (alveoli develop and mature; children spend more time in day care); 3–6
(children more likely to enroll in preschool/kindergarten); 6–12 (elementary school); and

10 For example, visithttp://www.epa.gov/airnow/to find daily pollution levels throughout the United States.
11 Families do not need to have direct preferences for this attribute. However, because air quality is an input in

the health production function, people with preferences regarding health will have implicit tastes for air quality.
12 This is analogous to the confounding that arises in estimating the effect of school quality on test scores.

Parents who choose to live in areas with better school quality may also make additional investments in their
children, making it difficult to identify the effect of school quality.

http://www.epa.gov/airnow/
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Fig. 1. Seasonal variation in pollution.

12–18 (secondary school). This will allow for different potential biological and behavioral
responses to pollution by the age of the child.

Second, by creating monthly time-series data at the zip code level, I define the unit
of observation as the zip code/month and specify a zip code-year fixed effect (FE). This
will capture permanent observed and unobserved factors within a zip code-year that affect
health, such as average smoking rates, average indoor pollution levels, and average health
care decisions to the extent that they are constant within a year or do not change in ways
that are correlated with pollution. Since the zip code is a finely defined geographic area
with frequent social interactions amongst residents, the FE will capture a large share of
potentially omitted characteristics.

The third innovation comes from using the diverse seasonal variation in pollution in
California that arises from local microclimates and geography. While it is plausible that
there are seasonal changes in health behavior that are correlated with changes in pollution,
the key factor is that these seasonal variations in pollution are different throughout California
depending on the unique physical characteristics of each area. For example, levels of ozone
increase in the summer at a greater rate because ozone is formed in the presence of sunlight.
Particulate matter is trapped by fog in winter weather. CO levels increase in cold, stagnant
weather.Fig. 1, based on zip code level pollution estimates (described in more details
below), shows the strong seasonal patterns of these pollutants. Furthermore, ozone increases
at a greater rate in the summer in hotter and sunnier areas, such as southern and central
California. PM10 increases in drier areas in the summer and fall, but increase in colder
areas in the winter because of increased use of combustion sources (Nystrom, 8/2001). To
highlight some of this diversity,Fig. 2shows monthly pollution levels for coastal counties
in southern California, an area where we might expect similar seasonal variations in health
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behavior and face comparable weather patterns. Focusing on ozone, Los Angeles and Orange
counties have comparable levels in the winter, but Los Angeles experiences higher levels
in the summer. Meanwhile, San Diego experiences higher winter levels that Los Angeles
and Orange, but lower summer levels. Since these patterns in pollution vary throughout
California and are naturally occurring, it is reasonable to assume that they are independent
of many seasonal investments in health.

In sum, I will compare how seasonal changes in pollution within a given zip code-year
affect changes in seasonal asthma rates for a specific age group.13 The following example
of smoking rates and outdoor pollution highlights how the empirical strategy works. Failing
to control for smoking is only a problem if smoking behavior is related to both pollution
and asthma. By looking at separate age groups, I circumvent the need to control for how
parents monitor tobacco smoke around their children based on the age of the child. By using
zip code-year fixed effects, I look at whether changes in pollution are linked to changes in
asthma within a zip code for each year. If smoking either does not change with changes in
pollution, or if it changes in a way that is unrelated to changes in pollution, then the fixed
effect would control for smoking behavior. Smoking behavior, however, may change within
a year - people may be more likely to smoke when they spend more time outside as the
weather improves. If this is the case, the fixed effect will not capture the changing smoking
patterns. However, if smoking patterns do not change from one season to the next in a way
that is correlated with the seasonal changes in pollution unique to that area, then I will not
need to explicitly control for smoking behavior.

While this identification strategy overcomes many problems, there is one main source
of endogeneity that remains—contemporaneous avoidance behavior. Since people can di-
rectly respond to daily pollution, this will not be captured by the identification strategy.
Although I include some measures of avoidance behavior, these measures only capture
part of avoidance behavior and only as it relates to ozone. However, if contemporaneous
avoidance behavior is positively related to pollution levels and avoidance behavior lowers
the likelihood of having an asthma attack, omitting it will yield a lower bound of the true
effect.

To proceed with estimation, I estimate the following model separately for each age group:

Yzyt = β0Pzyt + β1Azyt + β2Xzyt + αzy + ηyt + εzyt (1)

where the subscripts z, y, and t indicate zip code, year, and month, respectively,Y is the
number of ER asthma admissions,Pare ambient air pollution levels,A is contemporaneous
avoidance behavior that directly affects the child’s exposure to pollution,Xare other factors
that affect health (such as weather), and� is an i.i.d. error term. The key identification
parameters areαzy, zip code-year fixed effects, andηyt, year-month dummy variables.β0
is the coefficient vector of interest. The main hypothesis to test is whetherβ0 =0, namely
that pollution has no effect on asthma admissions.

13 One notable limitation of using seasonal changes in pollution is that, by smoothing out daily variation,
some valuable information may be lost. However, this only affects the efficiency of the estimates unless there are
threshold effects such that pollution beyond a certain level induces asthma attacks. Additionally, using seasonal
variation will not provide evidence on long-term health effects.
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4. Data

4.1. Sources

The California Hospital Discharge Data (CHDD) is a rich source of individual health
outcomes. This data set records the principal diagnosis of the patient upon release from the
hospital14, the month of admission,15 the zip code of residence, as well as the sex, race, age,
and the expected source of payment for all individuals discharged from a hospital in the
state of California. Data are available from 1992 to 1998 and each year contains on average
over 800,000 hospital discharges for children under age 18 (not including newborns).

While hospital data does not include information on all asthma attacks, the CHDD offers
three key advantages over self-reported surveys. First, hospital discharges, in particular ER
admissions, are a more objective measure of asthma and are less likely to be sensitive to
reporting biases.16 Second, there are a large number of observations available each year in
the CHDD. Third, having the zip code of the patient enables me to specify a zip code fixed
effect and to merge other key data sources at the zip code level.

The key data merged are atmospheric pollution levels from Environmental Protection
Agency (EPA) air monitoring stations throughout California. The monitor data are readily
available from 1982 until the present and are the most detailed data recording ambient
levels of criteria pollutants. Furthermore, they contain the exact location of the monitor,
enabling them to be merged with the CHDD.Fig. 3 shows O3 monitors in California in
1999 along with county outlines. These monitors are mainly located in the more densely
populated areas (shaded in gray).Fig. 4highlights Los Angeles County, showing again O3
monitors and now the outlines of zip codes. Since Los Angeles is a diverse county both
demographically and geographically and there are many monitors to capture local pollution
levels, assigning pollution at the zip code level should produce more reliable measures than
from assigning it at a broader level.

I also merge other data sources at the zip code level. Monthly meteorological data from
the National Climatic Data Center contains various measures from more than 1000 weather
stations in California as well as their exact location.17The California Association of Realtors
provides monthly zip code level information on the number of homes and average and
median sales price from 1991 to the present. Using 1990 Census estimates of population
counts by age for each zip code and annual county estimates by age from the Demographic
Research Unit of the California Department of Finance, I have approximated the annual
population for each zip code and age group.

As proxies for avoidance behavior, I merge the number of smog alerts announced in each
month. Air quality episodes, or “smog alerts”, are required by California law to be issued by

14 This is assigned according to the International Classification of Diseases, 9th Revision, Clinical Modification
(ICD- 9-CM) by the U.S. Department of Health and Human Services.

15 The exact day of the month is censored in the version of the data that has already been released to me. Only
an indicator for the day of the week is available.

16 ER admissions account for approximately 67% of all hospital admissions for asthma. When performing the
analysis using all hospital admissions, the results did not change considerably.

17 The meterological data are merged using the same inverse-distance weighted technique used to approximate
zip code levels of pollution (described below).
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Fig. 3. Ozone monitors in California.

local air quality management districts (AQMD)18 when criteria pollutants exceed levels as
specified by the California Air Resources Board.19 When this occurs, schools are directly
contacted and are urged to limit physical activities for children until pollution levels ease,
while other sensitive people are advised to avoid the pollution by remaining indoors (Air
Resources Board, 1990). While these advisories are required to be announced for all of the
criteria pollutants, historically announcements have only be made for ozone levels, and as
a result the advisories are commonly referred to as “smog alerts.”

4.2. Linking pollution

To approximate a monthly time-series of pollution at the zip code level, I first calculated
the coordinates for the centroid of each zip code in California. Using the reported coordinates
of the EPA monitors, I then measured the distance between each centroid and each monitor.
Finally, I calculated the level of pollution for a zip code by averaging reported values from
all monitors within 20 miles of the centroid, weighting by the inverse of the distance from

18 There are currently 17 air quality management districts in California.
19 While I only possess this data for the AQMD that covers Los Angeles, Orange, Riverside and San Bernardino

counties, it is unlikely that any other area has experienced smog alerts during this period.
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Fig. 4. Ozone monitors in Los Angeles county.

the centroid to the monitor. Therefore, I define pollution in zip code z at timeyt as:

Pzyt =
∑

j

(
(Pjyt × 1/(Dj|Dj ≤ 20))

1/(Dj|Dj ≤ 20)

)
(2)

whereDj is the distance from monitorj to the centroid of zip code z andPjzt is the pollution
measure at monitorj in year y in month t.

Five immediate issues arise in measuring pollution in this way. First, the choice of 20
miles as the cutoff is arbitrary. To test the sensitivity of this assumption, I also assigned
pollution levels using distance cutoffs of 10 and 5 miles. Panel A of appendix Table A.1
shows the correlation between pollution levels calculated using the various cut-offs. These
correlations are remarkably high, with none below 0.95, suggesting that the choice of
distance is unlikely to introduce any biases.20

Second, many monitors have been added or removed over the time period studied. This
occurs because pollution monitors are installed in areas where pollution exceeds NAAQS,
and can also be removed from an area if it falls below NAAQS (U.S. EPA, 1999b). As a result,
monitors are more likely to be placed in areas where pollution levels have been increasing,
and less likely to exist in areas where pollution has been declining. To assess the implication

20 When performing the analysis using a distance of 10 or 5 miles, the results were nearly identical, consistent
with these high correlations.
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of this, I estimate (2) in two ways: using all monitors from 1992 to 1998 and using only
continuously operated monitors from 1992 to 1998. Panel B of appendix Table A.1 shows
the number of monitors over time for both methods and the correlation between monthly zip
code levels of each pollutant calculated by each method. The overall number of monitors
has not changed considerably and the correlations for all are at least 0.98, indicating that
the sampling technique used for monitors should not interfere with inference.

Third, there are many factors that affect how pollutants travel, such as wind, rain, and the
size of the pollutant particle, and this may affect how well (2) measures the actual pollution
concentration21. For example, particulate matter, such as PM10, settles to the ground at a
much quicker rate than do gaseous pollutants (Wilson and Spengler, 1996). To get a sense
of how accurate the above approach is, I estimate the level of pollution at each monitor (as
opposed to zip code) using the above formula as if the monitor of interest were not there.
Therefore, I estimate the amount of pollution at a given monitor based on the pollution
levels at monitors less than 20 miles away. I do this for all monitors and then calculate
the correlation between the estimated pollution and the actual pollution, shown in panel C
of appendix Table A.1. The correlations for O3 and NO2 are remarkably high. This is not
surprising for O3 given it is formed in the atmosphere, as opposed to being directly emitted.
For PM10 and CO, the correlations are slightly lower, but still quite high at over 0.75. This
indicates the reasonable accuracy of this method for assigning pollution and suggests it
does not appear to be a major concern for this analysis.

Fourth, while it is crucial to control for multiple pollutants simultaneously, trying to
separately identify the effect of each pollutant can be difficult if pollutants are highly
correlated. Many pollutants originate from similar sources, as the preceding chart indicated.
Appendix Table A.2 shows the correlation matrix for the pollutants as assigned according
to (2). O3 does not appear highly correlated with any other pollutants, while NO2 appears
highly correlated with CO and PM10. This may make it difficult to obtain precise estimates
for NO2, making it useful to analyze models with the pollutants included individually.

Fifth, since monitors tend to exist in more polluted and populated areas, it is important to
understand how the characteristics of the population in these areas differ from those that are
excluded from the analysis. Appendix Table A.3 shows various demographic characteristics
for zip codes that are within 20 miles of a monitor for each of the pollutants and zip codes
that are not. While all of the variables shown are statistically different, the driving force
behind these differences appears to be the percent of the population of the zip code that lives
in urbanized areas. This coincides with the monitor locations shown inFig. 3. Although this
limits the representativeness of these findings, rural areas represent a much lower fraction
of the population and are less likely to experience high levels of pollution.

4.3. Trends and descriptive statistics

Table 1panel A shows the descriptive statistics of the data used in the analysis, including
the “between” and “within” zip code-year variation of each variable.22 For the pollutants,

21 While I obtained measures of precipitation to include in the analysis, wind data is not as widely available.
Furthermore, there is much debate on how to incorporate wind data.

22 The “between” standard deviation is calculated using ¯xi and the “within” is calculated usingx = x̄i + x̄.
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Table 1
Summary statistics

A. Summary statistics

Observations Groups Mean S.D. ‘Between’ zip-year S.D. ‘Within’ zip-year S.D.

O3 (ppb) 54,963 4991 38.905 17.803 9.830 14.855
CO (ppm) 54,963 4991 1.777 1.037 0.679 0.790
PM10 (�g/m3) 54,963 4991 34.210 13.984 9.874 9.933
NO2 (ppb) 54,963 4991 45.947 17.171 14.392 9.539
ER asthma rate age 0–1 54,843 4979 0.431 1.572 0.964 1.382
Population age 0–1 54,843 4979 578 390 391 0
ER asthma rate age 1–3 43,624 4949 0.135 0.755 0.469 0.668
Population age 1–3 43,624 4949 2347 1449 1416 0
ER asthma rate age 3–6 44,462 4959 0.167 1.066 0.762 0.916
Population age 3–6 44,462 4959 2159 1327 1305 0
ER asthma rate age 6–12 50,602 4987 0.088 0.393 0.313 0.344
Population age 6–12 50,602 4987 3568 2209 2221 0
ER asthma rate age 12–18 55,377 4990 0.072 0.411 0.202 0.380
Population age 12–18 55,377 4990 1812 1159 1170 0
% Normal neonates 54,963 4991 0.698 0.078 0.075 0.020
% Government insurance 54,962 4990 0.399 0.216 0.216 0.023
Ave. max. temperature (◦F) 54,963 4991 0.073 0.011 0.004 0.010
Total precipitation (in.) 54,963 4991 0.007 0.011 0.003 0.010
Semi-annual house price 45,662 4194 20,007 12,197 11,841 5.503
Smog alerts 54,963 4991 0.288 1.582 0.808 1.353

B. Pollution and asthma by SES

Pollutant High Low Age High Low

O3 38.283 (0.123) 40.117 (0.138) 0–1 0.493 (0.011) 0.729 (0.015)
CO 1.652 (0.007) 1.953 (0.008) 1–3 0.177 (0.004) 0.179 (0.009)
PM10 31.851 (0.095) 38.160 (0.104) 3–6 0.193 (0.004) 0.235 (0.012)
NO2 42.964 (0.118) 50.361 (0.123) 6–12 0.102 (0.002) 0.127 (0.004)
Observations 19,458 19,299 12–18 0.122 (0.003) 0.130 (0.005)

Note: The “between” standard deviation is calculated using ¯xi and the “within” is calculated using ¯xit − x̄i + x̄. Standard errors in parenthesis. Low SES is defined as
zip code percentage of high school dropouts greater than the median level of high school dropouts.
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it is not unusual for the within zip code variation to exceed the between zip code variation,
as is the case for O3 and CO. For asthma admission rates,23 younger children have a greater
likelihood of visiting the ER,24 with infants approximately six times more likely to visit the
ER than children over 6 and 1–6 year-olds two times more likely to visit than children over
6. Most of the variation in asthma rates comes from within the zip code-year. The patterns in
variation for asthma and pollution suggest ample variation for obtaining precise estimates
using the identification strategy described above.

Table 1panel A also shows variables that representAzyt andXzyt. House prices are
designed to reflect changes in asset wealth and are a “sufficient” statistics for many de-
mographics of a given area, such as school quality and crime rates. The percentage of
newborns with government-sponsored health insurance (calculated from the CHDD) is
used as a measure of changes in the bottom of the income distribution.25 The percentage of
normal newborns (calculated from the CHDD26) is used to approximate the health stock for
infants. Monthly hospital admissions for influenza are included to control for co-morbidities
that may be inducing asthma episodes, rather than pollution itself. Average maximum tem-
perature and inches of precipitation both affect the likelihood of being outdoors and may
directly exacerbate asthma symptoms (American Lung Association, 8/2001).

Since asthma disproportionately attacks children of low SES,Table 1panel B shows
pollution levels and ER asthma rates for two SES groups. I define SES groups as above
and below the median for the percent of adults over 25 years old in a zip code without a
high school diploma. The average levels of all pollutants are higher for the low SES groups.
Asthma rates for low SES are almost twice as high as high SES for infants, but are only
slightly higher for children over age 1. These differences in pollution and asthma rates by
SES are statistically significant, except for asthma for age 1–3.27

In turning to annual trends,Fig. 5shows asthma patterns in California and other regions
in the United States using the National Hospital Discharge Survey (NHDS).28 The northeast
has the highest admission rate, followed by the Midwest, the south, and then the west. The
pattern for California is similar to that for the entire United States, but at a level that is almost
50% lower. In turning to monthly patterns,Fig. 6shows asthma patterns over time for each
age group separately. Immediately evident are the strong seasonal patterns for admissions
for all age groups. Rates for each age group increase on average anywhere from two to three
times from the lowest month to the highest. Furthermore, the seasonal patterns differ across

23 Asthma is labeled as ICD-9-CM 493.
24 ER admissions are distinguished from other admissions according to the “source of admission” variable from

the CHDD.
25 There was only one expansion in medicaid eligibility that affected newborns during the time period studied.

In February of 1995, eligibility was extended from 185 to 200% of the federal poverty level. Although Access to
Infants and Mothers (AIM) also increased during this period, less than 0.6% of all births in California are paid for
by AIM (Managed Risk Medical Insurance Board, 8/2001).

26 In the CHDD, newborns are classified into one of the following seven categories: (1) died or transferred (2)
extreme immaturity or respiratory distress syndrome (3) prematurity with major problems (4) prematurity without
major problems (5) full term with major problems (6) neonate with other significant problems and (7) normal
newborn.

27 These patterns are also present when SES is defined by race or income.
28 The NHDS does not provide information to separately identify emergency and non-emergency hospital

admissions and the only geographic identifier is the region.
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Fig. 5. All hospital admissions for asthma for children in U.S.

age groups. The high season for infants is the winter, whereas high season for teens is the
fall. These striking patterns demonstrate the importance of looking at age groups separately
and the potential value in exploiting seasonal variation.

Before turning to the estimation, a case study of a specific zip code highlights the main
findings of this analysis.Fig. 7 plots monthly standardized pollution levels and asthma
counts for children ages 3–6 in zip code 92335 (Fontana in San Bernardino County)).
A strong pattern between asthma and CO emerges, with peaks and trough occurring at
roughly the same time throughout the entire time period. Asthma and O3 appear negatively
correlated, with O3 peaking in the summer. While at times asthma follows the patterns
of PM10 and NO2, the pattern tends not to persist for the entire time period, indicating a
potential link between CO and asthma.

Fig. 6. Monthly ER asthma rates by age.
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5. Results

5.1. Main results

The first set of results, fixed effect estimates of Eq.(1) without any direct controls for
avoidance behavior, indicate that pollution has a differential impact on infants as compared
to older children. As indicated inTable 2panel A,29 none of the pollutants are significantly
related to asthma ER hospitalizations for infants. However, for all older age groups, CO
is positive and significantly correlated with asthma. One explanation for the difference
across age groups is that asthma is often difficult to precisely identify in infants because of
communication limitations, little history of respiratory illnesses, and birth complications
(Letourneau et al., 1992). O3 has a negative effect on admissions, and is precisely estimated
for ages 6–12. NO2 and PM10 are generally positively correlated with asthma, but only NO2
is significant for Ages 6–12.

In terms of the control variables, temperature and precipitation are negatively correlated
with asthma. While weather may have a direct effect on asthma, such as precipitation “clean-
ing” the air (Wilson and Spengler, 1996), weather may indirectly affect asthma by altering
children’s exposure to pollution by changing the amount of time spent inside. Influenza
has a positive although insignificant effect on asthma admissions, which is consistent with
co-morbidity theories. The coefficients for the demographic variables are almost always
imprecisely estimated. Since these variables often have significant effects on health out-
comes, this suggests that the fixed effects appear to control for a large amount of observed
as well as unobserved heterogeneity.

While the presence of negative coefficients for O3 in Table 2panel A may at first seem
surprising, not controlling for contemporaneous avoidance behavior under-estimates the
true effect if avoidance behavior increases as pollution increases. Furthermore, if people
respond to an increase in pollution by increasing avoidance behavior to the point that health
actually improves, it can induce a negative effect. The following diagram illustrates how
negative effects could arise for O3.

29 For ease of interpretation, all pollutants have been standardized to have a mean of zero and standard deviation
of one.
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Table 2
Main results

Panel A. Fixed effect estimates by age group

(1) (2) (3) (4) (5)
Age 0–1 Age 1–3 Age 3–6 Age 6–12 Age 12–18

O3 −0.007 (0.010) −0.018 (0.011) −0.016 (0.011) −0.054** (0.010) −0.010 (0.008)
CO −0.010 (0.010) 0.024* (0.011) 0.049** (0.011) 0.023* (0.011) 0.021* (0.009)
PM10 −0.001 (0.008) −0.004 (0.009) 0.000 (0.009) 0.016 (0.008) 0.003 (0.007)
NO2 0.009 (0.014) 0.002 (0.016) 0.006 (0.016) 0.041** (0.015) 0.005 (0.013)
Ave. max. temp./10,000 −3.690** (1.030) −4.134** (1.163) −1.885 (1.133) −2.260* (1.053) −0.512 (0.900)
Total precip./10,000 −0.522 (0.777) −2.257** (0.876) −2.717** (0.916) −2.938** (0.827) −1.133 (0.706)
% Normal neonates 0.093 (0.154) n/a n/a n/a n/a
Log (house price/10,000) −0.016 (0.026) 0.025 (0.031) −0.024 (0.030) −0.006 (0.030) −0.018 (0.027)
% Government insurance −0.057 (0.119) −0.377* (0.149) 0.104 (0.146) −0.166 (0.137) 0.052 (0.115)
Influenza admissions 0.014 (0.018) 0.008 (0.036) 0.046 (0.047) 0.068 (0.048) 0.028 (0.040)
Observations 38,779 33,037 34,528 38,778 31,758
Number of groups 3372 3360 3490 3602 2759
R-squared 0.28 0.24 0.25 0.28 0.15

Panel B. Fixed effect estimates by age group with controls for avoidance behavior

(1) (2) (3) (4) (5)
Age 0–1 Age 1–3 Age 3–6 Age 6–12 Age 12–18

O3 −0.005 (0.011) −0.006 (0.012) −0.006 (0.012) −0.045** (0.011) −0.009 (0.009)
CO −0.010 (0.010) 0.027* (0.011) 0.051** (0.011) 0.025* (0.011) 0.021* (0.009)
PM10 −0.001 (0.008) −0.005 (0.009) −0.001 (0.009) 0.015 (0.008) 0.003 (0.007)
NO2 0.009 (0.014) 0.002 (0.016) 0.006 (0.016) 0.042** (0.015) 0.005 (0.013)
# of smog alerts −0.001 (0.002) −0.007** (0.003) −0.005* (0.003) −0.005* (0.002) −0.000 (0.002)
Observations 38,779 33,037 34,528 38,778 31,758
Number of groups 3372 3360 3490 3602 2759
R-squared 0.28 0.24 0.25 0.28 0.15

Robust standard errors in parenthesis. Pollutants are normalized to have a mean of zero and standard deviation of one. All columns include year/monthdummy variables
and an indicator if house price information is missing. The sepcification in each column is identical to the corresponding column panel A ofTable 2.

∗ Significant at 5%.
∗∗ Significant at 1%.



1228 M.J. Neidell / Journal of Health Economics 23 (2004) 1209–1236

When ozone exceeds 20 ppm, a smog alert is announced. If schools or parents respond
by keeping their children inside, children may exercise less as a result. Since exercise is
believed to induce asthma and is not directly observed, by omittingA I would estimate lineE
instead ofT,yielding a spurious negative effect of O3 on asthma hospitalizations. Although
this diagram assumes that ozone has no effect on asthma, the same negative effect could
occur if ozone has a positive effect on asthma.

To test the impact from omitting avoidance behavior, I add to the model the number
of smog alerts announced in each month.30 Since smog alerts are only announced with
respect to O3, this only tests how estimates for O3 changes. The results from including
this variable, reported inTable 2panel B, show that smog alerts have a negative effect on
asthma admissions for ages 1–12, supporting the notion that avoidance behavior is actively
undertaken. Meanwhile, the negative effect for O3 becomes considerably smaller and there
are no qualitative changes in the other pollutants. If O3 has no effect on asthma admissions,
in order for smog alerts to have a negative effect on asthma admissions children must be
doing something in addition to avoiding pollution that reduces the likelihood of having an
asthma attack, such as exercising less.31 However, it is possible that additional controls
for avoidance behavior with respect to O3 could uncover a positive effect of O3 on asthma
hospitalizations.32 These results indicate that omitting avoidance behavior induces a lower
bound of the biological effect of pollution on health.

An additional concern with these estimates is that by controlling for pollutants simul-
taneously it may be difficult to separately identify the effects of each pollutant. For ex-
ample, as mentioned in the data section, NO2, CO, and PM10 are highly correlated pol-
lutants.Table 3shows estimates from single-pollutant models. The effects of CO and
NO2 are both larger in general. If automobile exhaust is truly a contributing factor to
asthma, this finding is not surprising because automobile exhaust contributes heavily to both
pollutants.

An important issue to explore is whether the effect of pollution on asthma is the same
for all subsets of the population. Some groups, such as children with low health stock, may
face different risks from comparable levels of pollution. Additionally, asTable 1panel B
shows, pollution levels and asthma rates are higher for children of low SES. To assess the
importance of this, I interact each variable in Eq.(1) with an SES indicator as defined in
Table 1panel B.33 These results, shown inTable 4, indicate that both O3 and CO have a
larger effect on low SES children, with positive and significant effects on the interaction
term for ages 3–6 and 12–18. This supports the “double jeopardy” hypothesis that low SES
children are not only exposed to higher levels of pollution but also are more harmed by
similar amounts of pollution.

30 Since it is possible that the marginal effect of smog alerts varies with the number of smog alerts announced,
I also estimated a model that included the square of smog alerts. This term was insignificant and did not affect the
other estimates.

31 An alternative interpretation of these results is that smog alerts proxy for high levels of O3. This interpretation
suggests that O3 levels below 20 ppm have no effect on asthma admissions but levels above 20 ppm reduce the
number of admissions, which is an unlikely scenario.

32 Additionally, including avoidance behavior controls specific to the other pollutants can increase the magnitude
of the coefficients for those pollutants.

33 I also performed this analysis by defining SES according to race and income, and the results were comparable.
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Table 3
Fixed effect estimates with single-pollutants

Pollutants (1) (2) (3) (4) (5)
Age 0–1 Age 1–3 Age 3–6 Age 6–12 Age 12–18

O3 −0.001 (0.009) −0.014 (0.010) −0.015 (0.010) −0.029** (0.009) −0.01 (0.008)
CO −0.007 (0.009) 0.027** (0.009) 0.053** (0.010) 0.047** (0.009) 0.025** (0.008)
PM10 −0.001 (0.007) −0.002 (0.007) 0.007 (0.008) 0.019** (0.007) 0.006 (0.006)
NO2 0.001 (0.011) 0.009 (0.013) 0.028* (0.013) 0.047** (0.012) 0.015 (0.010)
Observations 38,779 33,037 34,528 38,778 31,758
Number of groups 3372 3360 3490 3602 2759

See notes toTable 2B. Each row within an age group represents results from regression with only that pollutant.
∗ Significant at 5%.

∗∗ Significant at 1%.
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Table 4
Fixed effect estimates by age group and SES

(1) (2) (3) (4) (5)
Age 0–1 Age 1–3 Age 3–6 Age 6–12 Age 12–18

O3 −0.007 (0.013) −0.003 (0.015) −0.038** (0.014) −0.044** (0.013) −0.022 (0.011)
CO −0.017 (0.013) 0.000 (0.014) −0.016 (0.014) 0.000 (0.014) −0.003 (0.012)
PM10 −0.006 (0.010) −0.012 (0.011) 0.004 (0.011) 0.011 (0.010) 0.005 (0.009)
NO2 0.021 (0.017) −0.001 (0.020) 0.020 (0.020) 0.040* * �012 (0.011) T2()�
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5.2. Magnitude of findings

To get a sense of the magnitude of these findings, I measure the percentage change (δ98)
in asthma admissions in 1998 that has resulted from changes in pollution levels over time:

δ98 = E(Y |P92, A, X) − E(Y |P98, A, X)

E(Y |P98, A, X)
(3)

whereE(Y|P92, A, X) is the expected number of asthma admission with 1992 levels of
pollution andE(Y|P98,A,X) is the expected number of asthma admissions with 1998 levels
of pollution. In other words,δ98 tells us how many asthma admissions in 1998 were avoided
because pollution levels were no longer at their 1992 levels. Using equation (1), we can
rewrite (3) as:

δ98 = β0 · (P92 − P98)

E(Y |P98, A, X)
(4)

whereβ0 is the coefficient of the effect of pollution on admissions. By treating the above
estimates as causal, replacingβ0 with its estimated coefficient will provide an estimate of
δ98. Table 5A shows the declines in pollution since 1992 have decreased asthma admissions
in 1998 for children over 1 from 4.6 to 13.5%, with no effect for infants.

To get a rough idea of some of the annual economic benefits associated with these lower
levels of pollution, I multiply the number of asthma hospitalizations in 1998 byδt to get an

Table 5
Magnitude of estimates

A. Effect of change in pollution from 1992 to 1998 on asthma admissions in 1998

Age (years) δ98 (%) Average charge ($) Number of admissions Cost(δ98) ($)

0–1 −0.7 6819 1899 −84,914
1–3 4.6 5915 1528 419,302
3–6 13.5 6608 1865 1,666,238
6–12 12.3 8272 2556 2,603,974
12–18 6.6 9207 1017 619,774
Total 5,224,372

B. Effect of SES and smog alerts on ER asthma admissions

Age (years) δa (%) δs (%)

0–1 −0.07 −0.69
1–3 −0.71 1.04
3–6 −0.45 5.90
6–12 −0.41 0.92
12–18 −0.05 0.15

Notes: δ98 is the percentage change in ER admissions for asthma in 1998 only if pollution levels were at their
1992 levels. Cost(δ98) = average charge x number of admissions× δ98. Coefficient estimates used to obtainδ98

are fromTable 2B. δa is the percentage change in ER admissions for asthma from the announcement of a smog
alert. Coefficient estimates used to obtainδa are fromTable 2B. δs is the percentage change in ER admissions for
asthma from higher pollution levels in low SES areas. Low SES is defined as zip code percentage of high school
dropouts less than median. Coefficient estimates used to obtainδs are fromTable 4.
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estimate of the change in the number of asthma cases. Then I multiple this by the average
cost of hospitalization for asthma in 1998. Thus, the fall in pollution levels from those
experienced in 1992 has saved approximately $5.2 million in ER admissions for asthma
in California in 1998 alone. These numbers, however, represent a lower bound of the true
social benefits associated with reductions in asthma attacks. They only include emergency
room admissions and their expenses in California, thus ignoring the rest of the U.S., other
sources of care for asthma attacks, follow-up treatment, lost wages for the family, lost
human capital development of the child, psychic costs to the family, and any long-term link
to health problems for the child.34

Since avoidance behavior as measured by smog alerts has a significant effect on hos-
pitalizations for asthma, it is useful to approximate the magnitude of these advisories. To
measure the percent reduction from an additional advisory conditional on O3 exceeding
20 ppm, specify Eq.(4) as:

δa = β1

E(Y |P98, A = 1, X)
. (5)

Shown inTable 5B, replacingβ1 with its estimated coefficient, the announcement of a
smog alert reduces asthma hospitalizations by 0.5–0.75% for children ages 1–12, but with
no effect for the youngest and oldest children.

To get a sense of the magnitude of the SES findings, I estimate how much of the SES
gap in asthma rates can be explained by pollution. To do this, I instead specify Eq.(4) as:

δs = β0s(PsS)

E(Y |Ps, S, A, X)
(6)

whereβ0s is the coefficient on the pollution-SES interaction variables andS is an SES
dummy variable.

These effects, shown inTable 5B, indicate that higher levels of pollution explain nearly
6% of the difference in asthma ER admissions for ages 3–6, but little effect for other ages.35

This suggests that although the increased presence of pollution in low SES areas puts these
children at a higher risk for hospitalization from an asthma attack, there are still many other
factors that affect this gap.

6. Discussion

There are three main findings in this paper. First, CO increases asthma hospitalizations
for children ages 1–18. There does not appear to be much of an effect of these pollutants
on infants, so looking at a broader range of outcomes can offer additional insights. The
possibility of an effect for other pollutants, however, cannot be ruled out because these

34 SeeHarrington and Portney (1997)for a more detailed description of these additional costs. Unfortunately,
there are no readily comparable measures of the costs to industry from increased pollution. SeeGreenstone (2002)
for an excellent and up-to-date study of this subject.

35 This does not necessarily imply that pollution is more likely to induce asthma in low SES children. High SES
children could use sources of care other than the hospital.
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estimates are likely to represent lower bound estimates of the biological effect of pollution
on health. Furthermore, effects from shorter-term exposure to pollutants may go undetected
in a monthly analysis if there are threshold or other non-linear effects. Nevertheless, these
estimates are large in magnitude and suggest that the declines in pollution that have occurred
over the 90s have greatly benefited children.

Second, avoidance behavior appears to play a significant role in reducing the effect
of pollution on childhood asthma, as indicated by the negative effect of smog alerts on
admissions. While I am only able to control for one source of avoidance behavior that relates
only to O3, it is possible that there are other unmeasured sources of avoidance behavior
that may affect the other estimates. Given these findings, it is important to understand the
effects of other potential sources for avoidance behavior, as it can suggest other policies to
improve health outcomes. Moreover, the costs associated with avoidance behavior cannot
be ignored in a welfare analysis.

A third finding is that the net effect of pollution appears to be larger for children of lower
SES, suggesting that pollution may be responsible for some of the gradient in incidence of
asthma by SES. Furthermore, neurobiological and economic research has suggested that
early shocks to a child’s health can persist for many years (Shonkoff and Marshall, 1990;
Case et al., 2002; Currie and Hyson, 1999), and asthma itself has been associated with later
health conditions, including lung cancer (Ernster, 1996). Therefore, if poorer families are
unable to afford to live in cleaner areas and as a result their children’s health development
suffers, this would suggest that pollution is one potential mechanism by which SES affects
health.

Since current pollution standards are based on adult health responses, understanding the
link between pollution and children’s health has become increasingly important to a wide
audience, and particularly to the EPA. The next step in this project is to look at the links
between air pollution and other health outcomes, such as the incidence of low birth weight
and other respiratory illnesses. The empirical strategy developed here appears to be fruitful
for finding these links and developing more comprehensive measures of some of the health
benefits from improvements in air quality.
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Appendix A

SeeTables A.1–A.3.
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Table A.1
Pollution correlation by distance, moitor sampling, and actual vs. estimated levels

A. Distance measure B. Monitor sampling C. Actual vs. estimated pollution levels

10 milesa 5 milesa # of monitors operating Correlationb Observations Monitors Correlationc

In 1992 In 1998 Continuously

O3 0.989 0.980 171 178 138 0.996 3141 106 0.925
CO 0.974 0.952 91 88 75 0.989 1524 53 0.785
PM10 0.981 0.983 125 149 98 0.981 1718 57 0.765
NO2 0.986 0.974 109 108 87 0.993 2035 71 0.901

a These values represent correlations between estimated zip code pollution values using monitors within 20 miles from the zip code centroid and 10/5 miles.
b These values represent the correlation between estimated zip code pollution values using any monitor in existence over the period 1992-1998 and onlycontinuously

operated monitors.
c These values reprssent the correlation between actual and estimated pollution levels at each monitor. Pollution levels are estimated at each monitor using an

inverse-distance weighted average of all monitors within 20 miles.
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Table A.2
Pollution correlation matrix

O3 CO PM10 NO2

O3 1
CO −0.4172 1
PM10 0.3308 0.3901 1
NO2 0.0469 0.7709 0.6513 1

Table A.3
Characteristics of zip codes inside and outside 20 miles from monitors for all pollutants

>20 miles ≤20 miles |t|
Median HH income 29,075 39,711 15.00
% Urban 19% 87% 37.59
% White 84% 71% 13.66
% Black 2.0% 7.6% 11.20
% <HS degree 26% 22% 4.15
% College degree 16% 26% 13.38
Total population <18 1,646,148 6,933,567 28.72
Average ER asthma rate 0.134 0.102 2.96

References

Air Resources Board, 13 September 1990. Air Resources Board Sets New Warning Level for Urban Smog.
California Environmental Protection Agency News Release.

American Academy of Pediatrics, 2000. Guide to Your Child’s Allergies and Asthma. Villard Books, New York.
American Lung Association, as of 8/2001. Asthma.http://www.lungusa.org/asthma/index.html.
Alberini, A., Krupnick, A., 1998. Air quality and episodes of acute respiratory illness in taiwan cities: evidence

from survey data. Journal of Urban Economics 44, 68–92.
Bjorksten, B., 1999. The Environmental influence on childhood asthma. Allergy 54, 17–23.
Bresnahan, B., Dickie, M., Gerking, S., 1997. Averting behavior and urban air pollution. Land Economics 73,

340–357.
Case, A., Lubotsky, D., Paxson, C., 2002. Economic status and health in childhood: the origins of the gradient.

American Economic Review 92, 1308–1334.
Chay, K., Greenstone, M., 2000. Does Air Quality Matter? Evidence from the Housing Market. Mimeograph.
Chay, K., Greenstone, M., 2003. The impact of air pollution on infant mortality: evidence from geographic variation

in pollution shocks induced by a recession. Quarterly Journal of Economics (in press).
Committee on the Medical Effects of Air Pollution, 2000. Asthma and Outdoor Air Pollution.

http://www.doh.gov.uk/comeap/airpol2.htm.
Currie, J., Hyson, R., 1999. Is the impact of health shocks cushioned by socio-economic status? the case of low

birthweight. American Economic Review 89, 245–250.
Desqueyroux, H., Momas, I., 1999. Air Pollution and health: analysis of epidemiological panel investigations

published from 1987 to 1998. Revue D Epidemiologie Et De Sante Publique 47, 361–375.
Duhme, H., Weiland, S., Keil, U., 1998. Epidemiological analyses of the relationship between environmental

pollution and asthma. Toxicology Letters 102, 307–316.
Eggleston, P., Buckley, T., Breysse, P., Wills-Karp, M., Kleeberger, S., Jaakkola, J., 1999. The environment and

asthma in U.S. inner cities. Environmental Health Perspectives 107, 439–450.
Ernster, V., 1996. Female lung cancer. Annual Review of Public Health 17, 97–114.
Fauroux, B., Sampil, M., Quenel, P., Lemoullec, Y., 2000. Ozone: a trigger for hospital pediatric asthma emergency

room visits. Pediatric Pulmonology 30, 41–46.

http://www.lungusa.org/asthma/index.html
http://www.doh.gov.uk/comeap/airpol2.htm


1236 M.J. Neidell / Journal of Health Economics 23 (2004) 1209–1236

Friedman, M., Powell, K., Hutwagner, L., Graham, L., Teague, W., 2001. Impact of changes in transportation and
commuting behaviors during the 1996 summer olympic games in atlanta on air quality and childhood asthma.
Journal of American Medical Association 285, 897–905.

Garty, B., Kosman, E., Ganor, E., Berger, V., Garty, L., Wietzen, T., Wasiman, Y., Mimouni, W., Waisel, Y., 1998.
Emergency room visits of asthmatic children, relation to air pollution, weather, and airborne allergens. Annals
of Allergy Asthma and Immunology 81, 563–570.

Gouveia, N., Fletcher, T., 2000. Respiratory diseases in children and outdoor air pollution in Sao Paulo Brazil: a
time series analysis. Occupational and Environmental Medicine 57, 477–483.

Greenstone, M., 2002. The Impacts of environmental regulations on industrial activity: evidence from the 1970
and 1977 Clean air act amendments and the census of manufacturers. Journal of Political Economy 110,
1175–1219.

Harrington, W., Portney, P., 1997. Valuing the benefits of health and safety regulation. Journal of Urban Economics
22, 101–112.

Krupnick, A., Harrington, W., Ostro, B., 1990. Ambient ozone and acute health effects: evidence from daily data.
Journal of Environmental Economics and Management. 17, 1–18.

Letourneau, M., Schum, S., Gausche, M., 1992. Respiratory disorders. In: Barkin, R. (Ed.), Pediatric Emergency
Medicine: Concepts and Clinical Practice. Mosby-Year Book Inc., St. Louis.

Managed Risk Medical Insurance Board, 8/2001. AIM Fact Book 1998.http://www.mrmib.ca.gov/.
National Institute of Environmental Health Sciences, 1/2000. Asthma and Allergy Prevention.http://www.

niehs.nih.gov/airborne/research/background.html.
Norris, G., YoungPong, S., Koenig, J., Larson, T., Sheppard, L., Stout, J., 1999. An association between fine

particles and asthma emergency department visits for children in Seattle. Environmental Health Perspectives
107, 489–493.

Nystad, W., 2000. Asthma. International Journal of Sports Medicine 21, 98–102.
Nystrom, M., 8/2001. California Air Quality Status and Trends 1999. Presentation to California Air Resources

Board,http://www.arb.ca.gov/aqd/aqtrends/trends1.htm.
Portney, P., Mullahy, J., 1986. Urban air quality and acute respiratory illness. Journal of Urban Economics 20,

21–38.
Portney, P., Mullahy, J., 1990. Urban air quality and chronic respiratory disease. Regional Science and Urban

Economics 20, 407–418.
Ransom, M., Pope III, C.A., 1995. External health costs of a steel mill. Contemporary Economic Policy 13, 86–97.
Seaton, A., et al., 1995. Particulate air pollution and acute health effects. The Lancet 354, 176–178.
Shonkoff, J., Marshall, P., 1990. Biological Bases of Developmental Dysfunction. In: Meisels, S., Shonkoff, J.

(Eds.), Handbook of Early Childhood Intervention. Cambridge University Press, Cambridge, MA.
Speizer, F., 2001. Childhood Asthma. Presentation at Health Effect Institute Annual Conference, Air Pollution

and Populations at Risk, Washington, DC.
United States Environmental Protection Agency, 1999. Guidelines for Reporting of Daily Air Quality - Air Quality

Index (AQI). EPA Document #454-R-99-010, Research Triangle Park, NC.
United States Environmental Protection Agency, 1999b. Conceptual Strategies for Ambient Air Monitoring. Draft

version 2.
United States Environmental Protection Agency, 2000. Air Quality Criteria for Carbon Monoxide. EPA Document

# 600-P-99-001F, Washington, DC.
United States Environmental Protection Agency, 2003. Criteria Pollutants,http://www.epa.gov/oar/oaqps/

greenbk/o3co.html.
Vacek, L., 1999. Is the Level of Pollutants a Risk Factor for Exercise-induced Asthma Prevalence? In: Allergy and

Asthma Proceedings vol. 20., pp. 87–93.
von Mutius, E., 2000a. Can Natural History of Asthma Be Modified? Revue Francaise D Allergologie Et D

Immunologie Clinique. 40, 689–694.
von Mutius, E., 2000b. The Environmental Predictors of Allergic Disease. Journal of Allergy and Clinical Im-

munology. 105, 9–19.
Wilson, R., Spengler, J., 1996. Particles in Our Air: Concentration and Health Effects.. Harvard University Press,

Cambridge, MA.
Zeckhauser, R., Fisher, A., 1976. Averting Behavior and External Diseconomies. Kennedy School Discussion

Paper 41D.

http://www.mrmib.ca.gov/
http://www.niehs.nih.gov/airborne/research/background.html
http://www.niehs.nih.gov/airborne/research/background.html
http://www.arb.ca.gov/aqd/aqtrends/trends1.htm
http://www.epa.gov/oar/oaqps/greenbk/o3co.html
http://www.epa.gov/oar/oaqps/greenbk/o3co.html

	Air pollution, health, and socio-economic status: the effect of outdoor air quality on childhood asthma
	Introduction
	Background
	Conceptual framework
	Data
	Sources
	Linking pollution
	Trends and descriptive statistics

	Results
	Main results
	Magnitude of findings

	Discussion
	Acknowledgement
	Appendix A
	References


