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Abstract

The potential benefits of combining the speciated PM2.5 and VOCs data in source apportionment analysis for identification of
additional sources remain unclear. We analyzed the speciated PM2.5 and VOCs data collected at the Beacon Hill in Seattle, WA
between 2000 and 2004with theMultilinear Engine (ME-2) to quantify source contributions to themixture of hazardous air pollutants
(HAPs). We used the ‘missing mass’, defined as the concentration of the measured total particle mass minus the sum of all analyzed
species, as an additional variable and implemented an auxiliary equation to constrain the sum of all species mass fractions to be 100%.
Regardless of whether the above constraint was implemented and/or the additional VOCs data were included with the PM2.5 data, the
models identified that wood burning (24%–31%), secondary sulfate (20%–24%) and secondary nitrate (15%–20%) were the main
contributors to PM2.5. Using only PM2.5 data, themodel distinguished two diesel features with the 100% constraint, but identified only
one diesel feature without the constraint. When both PM2.5 and VOCs data were used, one additional feature was identified as the
major contributor (26%) to total VOC mass. Adding VOCs data to the speciated PM2.5 data in source apportionment modeling
resulted in more accurate source contribution estimates for combustion related sources as evidenced by the less ‘missing mass’
percentage in PM2.5. Using the source contribution estimates, we evaluated the validity of using black carbon (BC) as a surrogate for
diesel exhaust.We found that BCmeasuredwith an aethalometer at 370 nm and 880 nm had reasonable correlations with the estimated
concentrations of diesel particulate matters (rN0.7), as well as with the estimated concentrations of wood burning particles during the
heating seasons (r=0.56–0.66). This indicates that the BC is not a unique tracer for either source. The difference in BC between 370
and 880 nm, however, correlated well exclusively with the estimated wood smoke source (r=0.59) and may be used to separate wood
smoke from diesel exhaust. Thus, when multiple BC related sources exist in the same monitoring environment, additional data
processing or modeling of the BC measurements is needed before these measurements could be used to represent the diesel exhaust.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The federal Clean Air Act Amendments of 1990
mandate that the U.S. EPA determine a set of urban
hazardous air pollutants (HAPs, or ‘air toxics’) that
potentially pose the greatest risks in urban areas, in
terms of contribution to population health risk. The
current set of 188 HAPs includes toxic metals and
volatile organic compounds (VOCs). The U.S. EPA
identified 33 urban HAPs based on emissions and
toxicities in a 1995 ranking analysis (U.S. EPA, 1999a)
and developed concurrent monitoring and modeling
programs to evaluate potential exposures and risks to
these top-ranked 33 HAPs. The National-scale Air
Toxics Assessment (NATA) estimated potential cancer
and non-cancer risks associated with the ambient
concentrations of these urban HAPs (U.S. EPA,
2002a, 2006). Results from the NATA project, which
rely heavily on HAPs emission inventories and
modeling approaches, will be used to set priorities for
the collection of additional emissions data, ambient
concentration data, and information on adverse effects
to health and the environment.

Developing effective control strategies to reduce
population exposure to certain HAPs requires identify-
ing sources and quantifying their contributions to the
mixture of HAPs and the associated health risks. One
approach is to use receptor-based source apportionment
models to distinguish sources. Most source apportion-
ment studies focus on analyzing either VOCs (e.g.
Mukund et al., 1996; Jorquera and Rappengluck, 2004)
or fine particle (PM2.5) mass (e.g. Kim et al., 2003;
Larsen and Baker, 2003; Kim et al., 2004a). Only few
studies used source apportionment modeling to identify
common sources of both VOCs and PM2.5. However, in
these studies, the monitored PM species were mostly
organic compounds (Harrison et al., 1996; Schauer and
Cass, 2000; Schauer et al., 2002; Larsen and Baker,
2003), rather than the metals, ions, and carbon
constitutes that are more routinely measured at current
PM monitoring network. In other source apportionment
studies that included both non-organic trace elements on
PM and gaseous pollutants (Swietlicki et al., 1996; Kim
et al., 2005a; Zhou et al., 2005; Liu et al., 2006), the
gaseous species usually were non-VOCs (such as CO,
SO2, and NO).

Among the HAP sources commonly found in urban
areas, diesel engine exhaust is of special interest as it is a
likely lung cancer hazard (U.S. EPA, 2002b). Emerging
evidence has also indicated that diesel exhaust exacer-
bates existing allergies and asthma symptoms (U.S. EPA,
2002b). Another HAP source of interest is wood smoke,
which is a major contributor to the air pollution in the
west coast of U.S. during winter months (Schauer and
Cass, 2000; Maykut et al., 2003). Exposure to wood
smoke has been linked to both acute and chronic
illnesses (Naeher et al., 2007). Both diesel exhaust and
wood smoke contain a complex mixture of gases and
particulates. In this paper, we apportioned the diesel
exhaust and wood smoke sources using the speciated PM
with and without additional VOC measurements. For
diesel exhaust, it is also commonly characterized by
diesel particulate matter through measurements of black
carbon (BC). Aethalometers are increasingly used in the
field to provide continuous BC measurements to
represent diesel exhaust (e.g. Edgerton et al., 2006;
Zanobetti and Schwartz, 2006). However, other sources,
such as wood smoke, also contribute to BC. Thus,
complications of using the BC measurements as diesel
exhaust marker in high and low wood smoke seasons
need to be addressed.

In this study we applied source apportionment
models to a combination of VOCs and non-organic
elemental PM2.5 speciation measurements to identify
sources of selected HAPs in Seattle, WA. We evaluated
the performance of the models with and without the
addition of VOCs data. Using the source apportionment
results, we examined the validity of using BC as a
marker for diesel exhaust during different seasons.

2. Methods

2.1. Sample collection and analysis

Speciated PM2.5 and VOCs measurements at the
Beacon Hill monitoring site in Seattle from 2000 to 2004
were used for modeling. This urban-scale site, located in a
highly populated neighborhood, has been shown to
represent average PM2.5 concentrations in a typical
Seattle residential neighborhood (Goswami et al., 2002).
It is located within 2 km of two major interstate freeways
and arterial roads, aswell as within 4 km of a warehousing
area and a major seaport. Thus it is impacted by a mixture
of urban sources including vehicle emissions and wood
burning.Amap and photograph of themonitoring site and
the surrounding area can be found in Maykut et al. (2003)
and Larson et al. (2006). The Beacon Hill site, as part of
the U.S. EPA Speciation Trends Network (STN), collects
PM2.5 samples using the URG (Chapel Hill, NC) sampler
equipped with Teflon, Nylon, and quartz filters, which
were analyzed for (1) PM2.5 mass and elemental
compositions; (2) sulfate (SO4

2−), and nitrate (NO3
−), and

(3) organic carbon (OC) and elemental carbon (EC),
respectively (Kim et al., 2005b). VOCs samples also were
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collected at the Beacon Hill site by the Washington
Department of Ecology. Formaldehyde and acetaldehyde
were sampled with a DNPH cartridge and analyzed with
HPLC-UV (EPATO-11A) (U.S. EPA, 1999c). Benzene,
1,3-butadiene, carbon tetrachloride, chloroform, dichlor-
omethane, tetrachloroethylene, and trichloroethylene,
were collected with a SUMA canisters and analyzed
with GC FID/ECD (EPA TO-14A) (U.S. EPA, 1999b).
These VOCs were chosen for monitoring because they
were on the list of the 33 urbanHAPs with emissions from
major, area and mobile sources (U.S. EPA, 1999a).
Among them, acetaldehyde, benzene, 1,3-butadiene, and
formaldehyde are mainly from combustion related
sources. The other VOCs of the urban HAPs were not
monitored because they were considered less stable or
there were no approved sampling and analytical methods
(PSCAA, 2003). An aethalometer (Magee Scientific Dual
Channel Aethalometer™) with a PM2.5 cyclone inlet
(SCC 1.829, BGI Inc., Waltham, MA), measuring optical
absorption at λ=880 nm (BCA) and at λ=370 nm (UV-
BC) (Jeong et al., 2004), has been operated by the Puget
Sound Clean Air Agency to measure real-time BC since
March, 2003.

2.2. Models implementation

We applied the Multilinear Engine (ME-2) (Paatero,
1999) for source apportionment analyses. This model
solves a positively constrained bilinear mass balance
model using an explicit least-squares equation. The
required input data include the mass concentrations and
uncertainties of each measured species. The concentra-
tions and uncertainties of the input PM2.5 elements and
VOCs species were processed according to Polissar
et al. (1998). Namely, concentrations below the method
detection limit (MDL) values were replaced by half of
the MDL values with uncertainties set at 5/6 of the MDL
values. Missing concentrations were replaced by the
geometric mean concentrations with uncertainties set at
four times the geometric mean concentration. We further
down-weighted the weak signals, defined as concentra-
tion values below 3 times the detection limit in this
study, by a factor of five (Kim et al., 2005b). Note that
uncertainty value for individual PM2.5 sample was not
reported prior to 2003 in the STN. Kim et al. (2005b),
examining a limited set of measurements in the STN and
their associated uncertainties, derived a comprehensive
set of error structures and uncertainty values for source
apportionment studies of STN data. The uncertainty
values for the speciated PM2.5 samples at Beacon Hill
were thus calculated according to the information given
in Kim et al. (2005b).
To investigate the benefits of adding VOCs data to the
speciated PM2.5 data and its effects on source apportion-
ment results, the model was applied to the PM2.5

speciated data with or without VOCs measurements.
When the model included only the PM2.5 data, the
measured PM2.5 mass concentration was used as the
dependent variable in the post-hoc regression model that
calculates the rescaling factors for converting the unitless
‘source contributions’ from the model outputs to the
estimated source-specific mass concentrations. When
both VOCs and PM2.5 data were used in the models, the
measured PM2.5 mass concentrations and the sum of the
measured VOCs concentrations were added as the
dependent variable for the regression model.

We also applied a novel approach by Larson et al.
(2006) that eliminated the need of the post-hoc
regression process by including the ‘missing mass’ as
another ‘specie’, which is defined as the concentration
of the measured total particle mass minus the sum of all
analyzed PM species. This step also provides an
auxiliary equation for the model to constrain the sum
of all species mass fractions in each source feature to be
100%. The uncertainty of the ‘missing mass’ is
calculated as the square root of the sum of the variances
of all species and measured mass. The ME model was
ran with the 100% constraint (i.e. including the missing
mass as one specie and not using the post-hoc regression
process) and without the 100% constraint (i.e. not
including the missing mass as one specie but using the
post-hoc regression process) in this study to evaluate
how this additional constraint affected the model
performance. Finally, using the modeling results as the
reference, we analyzed the correlations between the BC
measurements and the combustion related source
contribution estimates by seasons to evaluate the
validity of using BC as a surrogate for diesel exhaust.

3. Results and discussion

3.1. Quality control

Concentrations of formaldehyde from July 8, 2003 to
August 25, 2003 were almost 10 times higher than the rest
of the measurements. In the 2004 Air Quality Data
Summary Report (PSCAA, 2005) from the Puget Sound
Clean Air Agency, it was stated that a local formaldehyde
source, including solvents that are sometimes used in
research projects, was possibly present at the Beacon Hill
site during this period. As a regional increase of
formaldehyde during this time was unlikely, these
measurements were removed from the dataset. In addition,
following the procedures of Kim et al. (2005b), we
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estimated the OC blank concentrations to be 0.27 μg/m3

(OC=0.27+0.31⁎PM2.5, R
2=0.8). This estimated blank

value was consequently subtracted from all measured OC
concentrations. This observed positive artifact is unique to
the OC. Several studies have identified that it is mainly due
to adsorption of gaseous organic compounds on the quartz
filters or previously collected particles (Turpin et al., 1994;
Kim et al., 2001, 2005b). In the STN samplers, no upstream
carbon denuderwas used tominimize the positive sampling
artifact.

Table 1 summarizes the concentrations of the PM2.5

species and VOCs used in the source apportionment
model, and the percentage of samples below the MDL
(BDL). HAPs were included in this study only when
30% or more of the values were above the MDL (Buzcu
et al., 2007). Important PM species including OC, EC,
Ca, Cu, Fe, nitrate, Si, Na, sulfate, and Zn are 94% or
more above the MDL. The percentages of weak signals
for these species are mostly below 12%, except for Cu
Table 1
Average concentration of HAPs used for source apportionment modeling at

Element Abbrev Mean
(ng/m3)

N
va

PM2.5 Organic carbon c OC 2600 1.
Elemental carbon EC 610 1.
Ammonium NH4 460 0.
Arsenic As 0.97 0.
Bromine Br 2.0 0.
Calcium Ca 27 0.
Chlorine Cl 60 0.
Chromium Cr 1.6 0.
Copper Cu 4.3 0.
Iron Fe 52 0.
Lead Pb 3.7 0.
Manganese Mn 3.0 0.
Nickel Ni 2.3 0.
Nitrate nonvolatile NO3 460 0.
Potassium ion K 30 0.
Silicon Si 42 0.
Sodium ion Na 150 0.
Sulfate SO4 1200 0.
Tin Sn 5.1 0.
Titanium Ti 2.6 0.
Vanadium V 3.5 0.
Zinc Zn 8.8 0.

VOCs Acetaldehyde Ace 1500 3.
Formaldehyde For 1500 4.
Benzene Ben 1300 0.
1,3-Butadiene But 120 0.
Chloroform Chl 240 0.
Carbon tetrachloride Car 640 0.
Tetrachloroethylene Tet 180 0.
Trichloroethylene Tri 170 0.

a BDL: below detection limit.
b The weak signal is defined as the concentration value below 3 times the
c After the OC correction.
(=28%). Most VOCs measurements are above the
MDL. Dichloromethane had 74% measurements
below the MDL and was not included in the analysis.

3.2. Source apportionment results

3.2.1. PM2.5 data only
When using PM2.5 data only without the 100%

constraint, the 9-feature ME model provides the best
results. The 8-feature model failed to separate the
commonly seen soil and gasoline features while the 10-
feature model included a feature rich in OC and EC but
lacked other identifiable characteristic.When using PM2.5

data with the 100% constraint, the 9- and 10-feature
solutions are both reasonable. The 9-feature model
identified one diesel feature while the 10-feature model
identified two diesel features. More discussion about the
different diesel features are given later in this paper. In
general, these three sets of solutions provide similar
the Beacon Hill site (n=268)

umber of missing
lues (%)

Number of BDL a

values (%)
Number of weak b

signals (%)

1 0.0 1.1
1 0.0 6.0
0 0.0 0.4
0 60.1 96.3
0 11.9 66.8
0 0.0 0.0
0 34.3 46.6
0 28.0 73.1
0 5.2 28.0
0 0.0 0.0
0 27.6 89.9
0 30.2 68.3
0 22.0 56.3
0 0.0 0.0
4 42.2 44.0
0 3.0 6.0
0 2.2 11.9
0 0.0 0.0
0 66.0 99.6
0 21.6 54.1
0 23.5 45.9
0 0.0 1.9
7 0.0 4.1
1 0.0 4.9
0 0.4 0.4
0 22.4 77.2
4 0.4 35.1
4 0.0 0.4
4 3.0 37.7
4 14.2 57.5

detection limit.
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estimates in terms of the source contribution estimates
(SCE) with similar R2 values (0.88–0.89, Table 2)
between the observed and predicted mass concentrations.
Since the 100% constraint helped separate two unique
diesel features, only the results from the 10-feature model
are discussed below. The goodness of fit variable, i.e. the
Q-value, of this model is 3832. This value indirectly
verified the model's performance since theoretically it
should be approximately equal to or less than the product
of the number of samples and the number of species,
which is 268⁎23=6164 in this case (Yakovleva et al.,
1999; Liu et al., 2006). It is also close to the robust Q-
value of 3694, indicating that the potential outliers did not
affect the model's output significantly.

Fig. 1 shows the feature profiles using the speciated
PM2.5 data only. The soil feature was distinguished by
the characteristic richness in crustal-derived materials
such as Si and Ca (Kim et al., 2005b). The marine
feature was identified by the high levels of Cl and Na.
The wood burning feature was characterized by the high
levels of OC, EC and K with relatively low portions of
other trace elements (Maykut et al., 2003). The average
SCE for wood burning is higher during the heating
season than during the non-heating season due to the
more frequent burning activities in the winter (Fig. 2a).
The heating season is defined as Oct–Feb for Seattle
area based on average temperature and observed
ambient PM2.5 levels (Liu et al., 2003).
Table 2
Source contribution estimates from the ME models with PM2.5 data only or

Source feature PM2.5 only

PM contribution

MEUC
a MEC

b MEC
b

ng/m3 % ng/m3 % ng/m3 %

Wood burning 2400 31 2300 29 2400 30
Secondary sulfate 1700 22 1800 22 1600 20
Nitrate rich 1200 15 1600 20 1300 16
Diesel 890 11 610 8
Diesel 1 670 8
Diesel 2 240 3
Gasoline 180 2 400 5 270 4
Fuel 680 9 550 7 780 10
Marine 140 2 130 2 100 1
Soil 130 2 200 2 150 2
Aged sea salt 440 6 410 5 500 6
Other
R2 c 0.89 0.88 0.89
Slope 1.0 0.98 0.97
Intercept (ng/m3) 420 419 506
a MEUC: ME model without the 100%-constraint.
b MEC: ME model with the 100%-constraint.
c Regression model with measured mass against predicted mass.
Secondary sulfate and nitrate rich features were
clearly marked by the high concentrations of sulfate and
nitrate, respectively. Because the secondary sulfate
levels are enhanced by photochemical activity in
summer, the contribution in the non-heating season is
slightly higher than in the heating season (Fig. 2a). The
smaller than expected seasonal difference was attributed
to the winter-time inversion in Seattle area. On the
contrary, nitrate rich aerosol tends to form in the season
with low temperature and high humidity (Kim et al.,
2004b); therefore, the higher contribution in winter can
be observed with the difference further enhanced by the
winter-time inversions (Fig. 2a).

The fuel feature was characterized by its high
proportion of V and Ni. It represented the residual oil
burned by large industrial and commercial sources (Lee
et al., 2002). Kim et al. (2004b) showed that the major
contributors for the fuel source in Beacon Hill are from
downtown Seattle and the Port of Seattle (e.g. ship
emissions). Although diesel and gasoline features have
similar carbon fractions, it is easy to separate diesel
feature by its relatively high levels of Mn and Fe (Kim
et al., 2004b). We identified two diesel features with
high EC, OC, Fe and Mn as in Larson et al. (2006), in
which the separation of the two features originally
resulted from including the size distribution measure-
ments as utilized by their ME model. By comparing the
feature profiles in Larson et al. (2006), we interpreted
with all available HAPs data

All available HAPs

PM contribution VOC contribution

MEUC
a MEC

b MEUC
a MEC

b

ng/m3 % ng/m3 % ng/m3 % ng/m3 %

1500 27 1900 24 510 10 690 14
1200 21 1900 24 220 4 430 9
770 14 1600 20 470 9 260 5
560 10 700 9 720 14 710 14

290 5 240 3 280 5 360 7
480 9 430 5 660 13 580 12
99 2 140 2 34 1 61 1
190 3 230 3 150 3 130 3
350 6 410 5 290 6 480 10
160 3 400 5 1900 35 1300 26

0.88 0.88 0.77 0.72
1.4 0.97 1.08 1.14
173 421 37 −99



Fig. 1. Feature profiles from the ME models with the 100% constraint. The y-axis is the mass fraction (%) of each species in the feature profile. The
dark bars represent the results from using PM2.5 data only, while the light bars represent the results from the combined PM2.5 and VOCs data.
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Fig. 2. Source contribution estimates (SCE) between heating/non-heating seasons and weekend/weekday. Results were from the ME model with the
100% constraint and using the PM2.5 data only.
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Diesel 1, less enriched in EC and Mn than the diesel
feature identified in previous studies but enriched with
SO4

2− and NH4
+, representing the majority of the diesel

contribution, as the aged and chemically processed
tailpipe emission of diesel vehicles. Diesel 2 feature,
which had highly enriched EC and Mn without SO4

2−

and NH4
+, represents possibly the freshly emitted diesel

exhaust. The weekday and weekend variation of diesel
and gasoline features also agreed with the traffic pattern
(Fig. 2b). Aged sea salt is identified by its high mass
fractions of sulfate, nitrate, Na, and K (Kim et al.,
2004b). Wood burning, secondary sulfate, and nitrate
rich features were the most abundant contributors to
PM2.5 in Seattle (Table 2).

3.2.2. PM2.5 and VOCs
When both PM2.5 and VOCs data were included in

the ME model, the 10-feature solutions provided the
most reasonable results, regardless of the 100%
constraint. The 9-feature solutions without the 100%
constraint failed to resolve the secondary sulfate and the
9-feature solutions with the 100% constraint resulted in
an unusually high contribution (up to 13%) from the
aged sea salt. The 11-feature solutions with or without
the 100% constraint showed very little acetaldehyde, a
common component of the diesel exhaust (Siegl et al.,
1999), in the profile of the presumed diesel feature.
Table 2 shows that the source contribution estimates
from the model without the 100% constraint were
generally lower than those from the model with the
100% constraint. This is because for several features in
the no-constraint model, the sum of the contributions
from all species was considerably smaller than the PM2.5

mass concentration. Thus, for the PM2.5 and VOCs data
combined, only results from the constrained model are
included in the discussion below. The Q-value of this
model is 15,152, which is higher than the theoretical Q-
value of 8308 (=268⁎31). This is because we originally
used the default ‘c3=0.05’ setting in the ME model (i.e.
adding additional 5% of the larger of the input and fitted
concentration data to the uncertainty value) but did not
find reasonable solutions. For example, the original 10-



Fig. 3. Source contribution estimates (SCE) between heating/non-heating seasons and weekend/weekday. Results were from the ME model with the
100% constraint and using both the PM2.5 and VOCs data.
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feature solution did not give any ‘soil’ feature, which is a
commonly identifiable one. Thus we changed the c3 to
0.01 and inevitably increased the Q-value. On the other
hand, this Q-value is still similar to the robust Q-value
of 13,173, indicating the minimal effects from the
potential outliers.

The 10-source features derived from the ME model
with the 100% constraint using both speciated PM2.5

and VOCs data are presented as gray bars in Fig. 1. Two
Table 3
Pearson's correlation coefficients of aethalometer's measurement vs. combu

Diesel Gasoline

Non-heating Heating Non-heating Heatin

BCA
b 0.77⁎⁎ 0.71⁎⁎ 0.33⁎ 0.56⁎⁎

UV-BCc 0.8⁎⁎ 0.63⁎⁎ 0.39⁎⁎ 0.56⁎⁎

BCdiff d −0.12 −0.02 0.06 0.21

⁎⁎: pb0.01.
⁎: 0.01bpb0.05.
a Motor vehicle = SCE for diesel particulate matter plus SCE for gasolin
b Aethalometer's measurement at λ=880 nm.
c Aethalometer's measurement at λ=370 nm.
d The difference between UV-BC and BCA.
main differences were observed in the modeling results
with and without the addition of VOCs data. Only one
diesel feature was identified when including both the
PM2.5 and VOCs data. In addition, one ‘Other’ feature
enriched in VOCs and contributed 26% of the total
VOCs (Table 2) was identified when both PM2.5 and
VOCs data were applied to the model. This feature
probably represents the urban background concentra-
tions of VOCs since the contribution for each VOC was
stion related particles estimates from modeling PM and VOCs data

Motor vehicle a Wood burning

g Non-heating Heating Non-heating Heating

0.77⁎⁎ 0.74⁎⁎ 0.16 0.56⁎⁎

0.81⁎⁎ 0.69⁎⁎ 0.32⁎ 0.66⁎⁎

−0.10 0.07 0.36⁎⁎ 0.59⁎⁎

e particles.
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high and the reconstructed time series did not show
obvious temporal variation. Other than the two dissim-
ilarities, ME solutions with and without the VOCs data
showed similar PM2.5 profiles for all other features
(Fig. 1) and similar trend in the SCE for PM2.5 between
heating and non-heating seasons and between weekends
and weekdays (Figs. 2 vs. 3).

The SCE for PM2.5 were similar for diesel, gasoline,
marine, soil and aged sea salt for the constrained solutions
with or without the VOCs data (Table 2). In contrast,
slightly larger differenceswere obtained forwood burning
(30% vs. 24%), secondary sulfate (20% vs. 24%), nitrate
rich (16% vs. 20%), and fuel features (10% vs. 5%). The
regression curves of predicted versus measured PM2.5

mass from both sets of modeling results do not provide
sufficient information to determinewhich sets of solutions
are uniformly more accurate since they have similar R2

(Table 2, 0.89 and 0.88) and slope estimates (0.97 and
0.97). However, for the wood burning, diesel, and fuel
profiles the percentage of ‘missingmass’ in PMwas lower
when modeling the PM and VOCs data together (29.8%,
5.5%, andb0.01%) thanwhenmodeling only the PMdata
(42.2%, 21.1%, and 38.3%). On the other hand, for
secondary sulfate and nitrate rich features, the ‘missing
mass’ percentages were higher (37.9% vs. 28.8%; 50.9%
vs. 39.4%) when modeling the PM and VOCs data than
when modeling only the PM data. This is probably
because the VOCs measured in this study were not
sufficiently unique to these secondary aerosol features,
thus introducing more uncertainty to the model.

For the VOCs portion, the model identified a separate
feature (‘Other’) as a major contributor (26%) with
wood burning (14%) and diesel exhaust (14%) as the
next largest ones. The R2 of the predicted versus
measured mass for the VOCs portion is lower than the
one for the PM2.5 portion (Table 2), indicating a better
model fit for PM2.5 species than VOCs.

We further evaluated the modeling results by
examining the feature-specific Pearson correlation coef-
ficient between the SCE of PM2.5 from modeling with or
without the VOCs data. The SCE of the two diesel
features from modeling PM2.5 only were summed up to
be compared with the one from modeling PM2.5 plus
VOCs data. The feature-specific correlation coefficients
ranged from 0.92 (secondary sulfate) to 0.99 (nitrate rich)
with the median value of 0.96 (wood burning). These
high correlations verified the robustness of the modeling
results and indicated that the day to day variation of the
SCE estimates was captured mostly by the models. This
variation is important for conducting source-specific
health effects studies (Hopke et al., 2006; Ito et al., 2006;
Mar et al., 2006).
We originally hypothesized that adding VOCs data in
the source apportionment analysis would enhance our
ability to separate sources (e.g. the diesel). However, our
results showed that most features were readily identi-
fiable by using the PM2.5 species alone. The addition of
the VOCs data to the ME model did not provide
additional information for feature identification, based
on known source features in the literature. This is
probably due to the high impact of diesel exhaust at the
Beacon Hill site. Thus assessing the utility of adding
VOCs in the ME model to identify diesel features might
be biased at this site. On the other hand, it is found that
the SCE estimates for wood burning and diesel features
from modeling both PM2.5 and VOCs data might be
more accurate as evidenced by the less ‘missing mass’
percentage in PM. More importantly, the VOCs studied
here are also HAPs and from a risk management
perspective this approach is helpful for obtaining a more
complete picture of the source-specific health risks.

3.3. Combustion related particles and black carbon

Table 3 shows the correlations between the daily
time-averaged BC measurements from the aethalometer
and the SCE for combustion related particles from
modeling PM and VOCs data. Regardless of the season,
BCA was significantly correlated with the diesel
particulate matter (rN0.7) and gasoline particles
(rN0.3). Thus the SCE from the two features were
summed up to represent the SCE from the motor
vehicles for the following analysis. Note that the
correlation was lower with the gasoline particles than
with the diesel particulate matter. This is because that
the diesel engine emits more BC comparing to spark
ignition engines (Miguel et al., 1998; Zhu et al., 2002).

Table 3 shows that during the heating season the BCA

correlated well with not only the motor vehicle particles
(r=0.74) but also the wood burning particles (r=0.56),
indicating that it is not a unique tracer for traffic exhaust.
Similar results were observed for UV-BC; i.e. during the
heating seasons, it correlated with both the motor
vehicle and wood burning particles (rN0.66, Table 3).
This observation is consistent with previous findings
that BC, as measured by the aethalometer, represent
light absorbance by black carbon originating from
various sources including traffic exhaust and wood
burning smoke (Polissar et al., 2001; Larosa et al.,
2002). Therefore, one should be cautious with using
aethalometer BC to represent traffic exhaust in exposure
and epidemiologic studies, especially when other
sources (e.g. wood burning smoke) exist in the same
monitoring environment.
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One possible way to separate the traffic exhaust and
wood smoke signals is to use the difference between the
UV-BC and BCA values. During the heating season, the
UV-BC was generally higher than the BCA and the
difference (mean±SD=144±170 ng/m3) correlated well
with the SCE for wood burning particles (r=0.59,
Table 3), but not that for motor vehicle particles
(r=0.07, Table 3). It was previously suggested that the
additional absorption of UV-BC is due to the UV-
absorbing aromatic organic material in the wood smoke
particles (Jeong et al., 2004; Park et al., 2006).

4. Conclusions

The major PM2.5 emission sources at the Beacon Hill
site are wood burning, secondary sulfate and nitrate. The
majority of our measured vapor phase HAPs come from
wood burning, diesel exhaust, and the general urban
background. Light absorption carbon (BC) measure-
ments by an aethalometer at 370 and 880 nm correlated
well with motor vehicle particles throughout the year and
with wood burning particle during the heating season.
This suggested that aethalometer BC came from both
traffic exhaust and wood burning smoke, and more so
during the heating season. Thus, additional data proces-
sing or modeling of the BC measurements (e.g.
examining the difference between the BCA and UV-
BC) is needed to separate these two sources.

Compared to the traditional post-hoc regression
process, the approach of including the ‘missing mass’ as
one specie provided several advantages. The 100%
constraint can be implemented so the sum of all species
mass fractions in each source feature is 100%. When
modeling the PM2.5 data, this constraint helped resolve
two diesel-related features.Whenmodeling the PM2.5 and
VOCs data without this 100%constraint, the SCE tends to
be underestimated relative to the measured mass
concentration. We had hypothesized that the additional
VOCs features derived from combined dataset would
provide information for identifying additional sources
(i.e. diesel). However, the potential benefits of adding the
VOCdatawere undermined asmajor sourceswere readily
identified using merely the PM2.5 data and the VOCs
measured in this study might not be unique for certain
sources. The latter explanation is consistent with the fact
that theQ-value frommodeling the PM2.5 and VOCs data
was higher than the theoretical Q-value. Nevertheless,
with the addition of the VOCs data, the MEmodel gave a
more accurate SCE estimate for combustion related
sources and provided a more complete set of exposure
sources including the VOC source. This could be crucial
when conducting source-specific risk assessment.
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