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Abstract

A two-dimensional time dependent coupled free-boundary numerical model for tidally-induced flow and transport through the

dike of a confined disposal facility (CDF) for contaminated sediments is presented in this paper. The model simulations demonstrate
the major effect that tidal fluctuations have on the dynamics of the discharge flux. Sensitivity analyses demonstrate that tidal
fluctuation hastens the rate of plume migration near the exit face because of the relatively high advective and dispersive fluxes

induced by tides. With or without tides, the rate of contaminant migration increases with higher CDF area hydraulic gradient.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Confined disposal is the placement of dredged mate-
rial into a secure area where the sediment is physically
contained. Confined disposal facilities (CDFs) are diked
structures that have been built for the disposal of
dredged material where in-water placement and benefi-
cial use are not feasible or environmentally acceptable.
The size, shape, design and level of complexity of these
facilities vary widely depending on dredging quantities,
methods of disposal, sediment contamination levels,
state and local requirements and site characteristics.
Confined disposal is the most commonly used manage-
ment practice for contaminated sediments dredged for
navigation and environmental remediation (IJC, 1997;
USACE, 1997; USEPA/USACE, 1998a,b) and several

* Corresponding author. Tel.: C1 504 388 2198; fax: C1 225 578

1465.

E-mail address: tyler@bit.csc.lsu.edu (J.M. Tyler).
1364-8152/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.envsoft.2004.06.005
computer models have been developed to support CDF
design and operation (Dorkin et al., 1989; Myers, 1991;
Myers and Brannon, 1991; Su et al., 2003; Su, 2004).

Many in-lake facilities have stone dikes constructed
with layers of stone of increasing size. The center of the
dike (the core) typically contains sand or gravel. The
outer layers of the dike have stone with sizes increasing
from several pounds to several tons to protect the
facility from waves. Most existing, in-lake CDFs have
no liners. The stone dikes are permeable upon construc-
tion. As dredged material is placed into the CDF, water
is moved passively through the dike. The sand or gravel
in the core of the dike functions as a filter and retains
much of the suspended sediments. As the in-lake CDF
becomes filled, portions of the dike become clogged as
the sediments are pressed against it. The stone dike
becomes progressively less permeable.

The primary objective of a CDF is retention of
suspended solids, which are expected to contain the vast
majority of the contaminants. The porous dike walls
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eliminate water retention but provide a pathway for
untreated contaminated water to return to the fresh
water body. Evaluation of water exchange and its
implications for contaminant exchange is the main
focus of our study.

The focus of the current work is development of
a computer-modeling tool capable of evaluating the
environmental significance of contaminant losses from
in-lake CDFs. Data from a particular CDF near
Chicago, IL and constructed in the manner described
above were employed in the development of the model.
Previous results of computer modeling had suggested
that a CDF was efficient in retaining PCB’s (Dorkin
et al., 1989; Myers, 1991; Myers and Brannon, 1991).
Here, we focus on the effects of tidal fluctuations on the
temporal and spatial distributions of a contaminant
plume within and through the dike wall. Lake waters
infiltrating inward during a high-tide period and dis-
charging outward during a subsequent low-tide period
may significantly change the concentration levels of a
plume as well as the rule of plume migration into the
lake water. The model can also be used to examine the
influence of low frequency lake water level fluctuation.
Time-dependent variable water level changes in the lake
produce time-variable dike-water flow into the CDF and
contaminant transport outward through the dike.

This study presents a numerical solution of a
two-dimensional porous flow model coupled with an
advection–dispersion equation for contaminant trans-
port in a flow domain with simultaneous CDF elevation
control. This study also provides sensitivity analyses for
the physical parameters that affect the transport pro-
cesses of a contaminant plume within a tidally influ-
enced zone of an aquifer.

2. Problem formulation

Fig. 1 shows an idealized version of the cross-section
of a confined disposal facility dike. This idealization is
made to render the problem for two-dimensions.

We will restrict our investigation to incompressible
flow with constant density r and a homogeneous
medium. In this case, we can define the hydraulic head
h as a potential function for the flow:
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The flow equation, assuming Darcy’s Law, is of the
form:
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where h is hydraulic head ( potentials), Kxx is the
hydraulic conductivity tensor’s x (horizontal) compo-
nent and Kyy is the y (vertical) component and S is the
specific storage coefficient. The storage coefficient S
expresses the compressibility effects of the saturated
volume element; P is the pore water pressure in the flow,
r the fluid density, and g is the gravitational constant.

The velocities can be estimated as:
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The dispersion tensor Dij is the sum of molecular
diffusion and mechanical dispersion:
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where DM is the molecular diffusion coefficient, aL the
horizontal longitudinal dispersivity, aT the vertical trans-
verse dispersivity, V the magnitude of the velocity vector
and S0 is the porosity of the aquifer [dimensionless].

With these definitions, contaminant transport can
be described in terms of its concentration cðx; y; tÞ
satisfying:
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To solve Eqs. (1) and (3), the initial and boundary
conditions must be specified in the area of interest in the
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Fig. 1. Simplified dike cross-section. PQ and PR in-dike flow

boundary. PR possible sink area.
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domain (Fig. 1). In the most common investigations, the
boundary (vU) of the fluid region is fixed. This is not
true in this problem because we have an unconfined free
surface in the dike, which is critical to our investigation.

In an unconfined aquifer, the physical problem is
different for the upper ‘‘free’’ boundary (Gup). On this
‘‘free’’ boundary, we need to satisfy both a dynamic con-
dition, for the flow pressure to be equal to the outside
atmospheric pressure, i.e. hZy, and a kinematic condi-
tion, which represents the mass conservation law on the
free surface (see Appendix):
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Here,
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are the flux vectors for flow for free

boundary yZfðx; tÞ and Sy is the effective porosity of the
media. In our study, we did not assume the hysteresis
effect in saturated–unsaturated boundary movements.

For the purposes of this work, the zone of partial
saturation is neglected. The practical problems of
interest involve relatively high permeability, low capil-
larity media for which a sharp boundary between
saturated and unsaturated regions is a good approxi-
mation.

To solve this problem, the Finite Element Method
(FEM) will be used with a discretization of the original
problem using Eqs. (1) and (3) (Cook et al., 1989;
Zienkiewicz and Taylor, 1994; Schiesser, 1991; Burnett,
1988; Lapidus and Pinder, 1982; Pinder and Gray,
1977). The finite element solution for transient analysis
introduces a function that is time dependent HZHðtÞ
for the head. Typically, time integration is performed
with a finite difference approximation. We used vari-
able-order variable-stepsize backward differentiation
formulas with a preconditioned Krylov iterative method
(Saad and Schulz, 1986; Brown et al., 1994).

The objective of solving the finite element equations
is to compute the head at each node in the domain.
When the material properties are constant, the nodal
head can be computed directly by linear analysis.
However, when the material hydraulic conductivity is
a function of the head, the correct material properties
are not known at the beginning of the analysis;
consequently, an iterative scheme is required to solve
the equations, which are nonlinear.

The simplest technique uses a repeated substitution in
the iterative process. For the first iteration, the specified
initial heads are used to define the material properties.
The material properties are updated in subsequent
iterations using the computed head from the previous
iteration. For transient analyses, the head at the mid-
point of the time interval is used to define the material
properties, that is, the material properties are defined at
the average of the previous and current computed heads.
The iterative process continues until the iteration
number reaches a maximum specified number or the
results satisfy the convergence criteria. The Euclidean
norm of the change in the total head vectors H between
consecutive iterations is used as a measure of conver-
gence. The vector norm of the residual changes is
defined as:

kDHkZ
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jZ1

��DHj
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This residual is a measure of the total difference between
iterations. In a normal convergence process, this re-
sidual will decrease and approach zero. The solution is
assumed to have converged when the residual is less
than a pre-specified tolerance 3H.

Frind and Pinder (1982) and Frind (1988) proposed
a method where the natural boundary term is solved;
then, the dispersive and advective mass fluxes are
determined at the exit boundary. This result is referred
to as a free exit boundary. We used this method to solve
the natural boundary term.

With a free exit boundary, the nodes along the exit
boundary are not like ordinary boundary nodes. In-
stead, they behave like internal nodes, making it possible
to compute the concentration at these nodes without
assuming a known concentration for the mass flux at
these nodes. The free exit approach does not force the
concentration gradient to zero as with a zero dispersive
mass flux. The solutions for these two methods with
different exit boundary conditions are practically the
same, except very near the exit boundary, i.e. specified
on the (left) side of the flow problem.

3. Results

3.1. Hydraulic head and Darcian flow problem

As an example of the application of the described
methodology, the self-consistent estimation of the flow
region and flow characteristics governed by Eqs. (1) and
(4) is considered. First, we considered a flow boundary
development without the tide; this produced no changes
in the level of either reservoir. Next, a dynamic trans-
formation and repositioning of the interior in-dike flow
boundary due to the presence of a tide and correspond-
ing changes of the free water levels in the surrounding
reservoir are considered.

The iterative solution procedure follows: fix the
current in-dike interior flow boundary position,
yZfðx; t0Þ, and formulate (apply) appropriate bound-
ary conditions on this surface (in this caseda curved
line) at the atmospheric pressure exposed boundary.
This keeps the porous water pressure zero PjGZ0 on
this boundary or the total head equal to elevation y
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(boundary PQ). This assumes an impermeable flow
boundary ðV/�n/ÞjGZ0. On the wetted portions of the
dike boundary (Fig. 1), we have known values for the
total hydraulic heads hjGZHLðtÞ on the left side
and hjGZHRðtÞ on the right side. The additional
seepage area of the boundary QP remains at PjGZ0.
These flow boundary descriptions are significantly
different from the fixed problem. In this problem,
there is an additional highly nonlinear dependence
for the head on the dynamic flow area. Given the
geometry and boundary conditions, the hydraulic head
problem (1) is solved yielding the time dependent head
hðx; y; tÞ.

One solution step solves the 1-D moving-boundary
problem and determines a new boundary position,
which is consistent with Eq. (4) and corresponds to an
initially ‘‘fixed’’ normal flux ðV/�n/ÞjG. By its nature, Eq.
(4) is the 1-D transport equation that governs the
transport of the boundary yZfðx; t0Þ into its new
‘‘position’’ yZfðx; tÞ. The function fðx; tÞ is unknown,
and will be the consistent solution at time t0 of the
coupled problems (1) and (4). The solution of this
coupled problem involves the calculation of the move-
ment of the boundary to compensate for the normal
velocity and corresponding mass flux through the
boundary. This new boundary redefines a new head
distribution and when internal stabilization is achieved,
the time step Dt is completed.

The numerical solution of the 1-D transport problem
is based on a 1-D finite element method (FEM)
approximation of Eq. (4) with boundary conditions as
follows: fix the function fðx; tÞ value at the side where
head is independent of time and use the slope of the
previous iteration. We used second order Lagrange
elements as the FEM shape functions. The formulated
problem has some additional numerical difficulties; its
coefficients, the boundary values of Darcian velocities	
u; v



, were obtained after differentiation of the hydrau-

lic head with respect to x and y. We can guarantee the
existence of these derivatives for an approximated FEM
solution, but in general, they do not have continuity.
This results in a hyperbolic partial differential equation
with discontinuous coefficients. We used piecewise third
degree polynomial spline approximations for the normal
Darcian velocity field to smooth the predicted bound-
ary. We estimated the mass flux across the previous
boundary at the previous time step (when this boundary
was consistent with the geometry) to reposition the
boundary.

The next iteration step interpolates the previous head
solution into a new flow area and solves the head
distribution problem with a new flow boundary that has
the pore water pressure equal to zero PjGZ0. This is the
condition on the in-dike moving boundary PQ. This
iteration is repeated until acceptable convergence of the
algorithm occurs.
Fig. 2 represents consistent solutions of coupled flow-
boundary problem for porous unconfined flow. In this
case, with predefined geometry for the dike and hydrau-
lic parameters for the moving-boundary, the results are
significantly different from the case when the boundary
for the flow is given by the Boussinesq approximation.
As a comparison, the Boussinesq approximation solu-
tion in a Dupuit–Forschheimer approach (Bear, 1979;
Freeze and Cherry, 1979) was used to determine an
unconfined aquifer boundary. In the Boussinesq approx-
imation, the change in water volume associated with
change in aquifer thickness (or water table level) follows
from the definition of the apparent specific yield, and
with a horizontal flow prevalence governed by the
nonlinear Boussinesq equation for aquifer thickness h:
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The steady-state solution of this equation in 1-D
immediately follows and has a parabolic profile:

h2Zh2R �
�
h2R � h2L

L

�
ðL� xÞ:

where hL and hR are the lake and CDF open water levels
and L is the horizontal distance between point R and
point Q.

In the numerical solution, flow conditions satisfy
boundary conditions PjGZ0 on PQ and then remain
as a flow line with the condition ðV/�n/ÞjGZ0 on PQ. In
the Boussinesq approximation, the head equipotential
lines are not normal to the boundary, so a nonzero
normal flux ðV/�n/ÞjGs0 exists on the boundary. It is
impossible to meet both dynamic and kinematic con-
ditions on the boundary. The Boussineq approximation

0 L/2 L

H/2

H

Fig. 2. Head distribution equipotential lines in a consistent moving-

boundary approximation. On the in-dike boundary we have relatively

accurate approximation for condition ðv/ n
/ÞZ0.
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solution also incorrectly estimates the area incorporated
within the flow.

3.2. Tide

The effects of the tidal fluctuation were evaluated in
the Chicago CDF for which water levels inside and
outside the retaining dike have been measured (USACE,
1989). This motion has a characteristic delay in the CDF
level with respect to the lake. The amplitudes are
practically the same in both reservoirs. The major results
are in the behavior at near equilibrium; these results will
be discussed further.

3.3. Soluble contaminant transport

The contaminant transport process analysis is a sep-
arate calculation from the hydraulic head with moving
boundary for each time step. For every time step,
a flow domain UðtÞ and hydraulic head distribution
hðx; y; t;UðtÞÞ are consistent and form a coupled prob-
lem. With non-stationary modeling, a dynamic flow
domain UðtÞ depends on time, and non-stationary
Darcian velocity field V

/ðtÞZ
	
�Kxxvh=vx;�Kyyvh=vy



.

Additional iterations need to be performed for each time
step to solve the transport Eq. (2). To solve this problem
the steps followed were: first, the geometry was fixed,
then a time-step Dt with this geometry was computed so
that calculated time-dependent head distribution was
consistent within acceptable tolerance. This problem
with Eq. (2) is a dispersive–convective problem with
a time- and geometry-dependent convective velocity
field

	
�Kxxvh=vx;�Kyyvh=vy



. The concentration var-

iation for this time step is then determined. When we
begin the next time step, the previous concentration
distribution is treated as the new step initial concentra-
tion distribution for the dispersive–convective problem.
The mass balance between the two main phenomena –
substance dispersive flux QdZð�S0D � grad CÞ and
convective flux QaZC � V/ in general govern the un-
derlying physics for the moving media transport process.
Convective flux in uncompressible flow with div V

/
Z0

produces a non-divergent advective term ð�V
/�grad CÞ

in the mass balance Eq. (2). The flux Qa is defined by the
flow characteristics and is responsible for the direct
transport of concentration. Its contribution to the total
mass balance is proportional to the concentration and is
important in the high concentration gradient areas of
the system. Diffusive flux Qd depends on the con-
centration gradient and in the mass balance this appears
as a negative divergence of the dispersive flux
�divð�S0D � grad CÞ. In this, Eq. (3) is a non-divergent
form of the convective–dispersive equation. The diffu-
sion-like process depends on the dispersion tensor D in
Eq. (3). In Eq. (3), both the dispersion tensor’s symmetric
and antisymmetric parts depend upon the Darcian
velocities. So, in the flux term S0D, Darcian velocity V
/

Eq. (3) for the porous media was used instead of the
water velocity U

/
ZV

/
=S0.

3.4. Boundary conditions specification

The ‘‘free’’ boundary condition ð�S0D � grad CÞ�
n
/
Z0 was employed which implies that the transport

by diffusion in the direction perpendicular to the
boundary can be neglected, i.e., transport in or out of
the system is dominated by convection. This boundary
condition was applied to the dike walls exposed to both
the lake and CDF. The dike foundation and at the in-
dike free surface boundary are treated as impermeable
boundaries with the dynamic condition ðn/�V/ÞjGZ0 and
no dispersive flux ð�S0D � grad CÞ � n/Z0 through the
boundary. Fig. 3a and b provide a comparison of the
influence of the surrounding reservoir level changes with
respect to interior dike dynamics. Fig. 3a presents the
concentration distribution profiles for the localized
initial contaminant at the CDF side. Fig. 3b presents
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Fig. 4. Dynamic concentration distribution in a several 10%-tide phases: (a) and (b) soluble transport model (grad CZ0 on the contact boundary);

(c) and (d) model the undissolvable case (CZ0).
time versus dispersive flux,
R
ð�S0D grad CÞ � n/dl,

through the lake boundary, center and CDF boundary.
Fig. 4 presents predicted concentration distributions

with the tidal fluctuations shown in Fig. 3. As seen on
Fig. 4a–d, these distributions differ significantly. The
time-averaged solution is not identical to the case of
average tide (i.e. no tide) because there is a velocity field
distribution with the time-changing geometry. The
moving boundary behavior inside the dam has a com-
plicated non-symmetric dynamic profile in time. There is
no reasonable linear flow approximation, even in the
area where the disturbance in the velocity field is not
large and the flow is practically horizontal. The time
dependent behavior of the dispersive and convective
fluxes as shown in Fig. 3 can be used to estimate the time
lag in the seepage on the lakeside and compared to the
average flux values on the lakeside. The convective
flux estimation and the average behavior of the system
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depend significantly upon the lakeside boundary
condition. To evaluate the relative influence of disper-
sion and advection, we considered the case when the
transport is dominated by mechanical dispersion
(DM=ðaTjVjÞ!1 with PeZðjVjhÞ=

�
2Dxx;yy

�
!1). In this

case, dispersion is prevalent but determined by the
velocity field. This process quickly tries to equalize the
concentration and reduce the gradients for concentra-
tions in the horizontal direction.

3.5. Comparison to observations

Fig. 5a and b present the model predictions of water
level in the CDF using actual observations (USACE,
1989) to adjust the conductivity and dispersivity of the
dike. The general behavior of the CDF level is predicted
with an error of less than 5% for the whole observation
period. The resulting contaminant dynamics are shown
in Fig. 6. The lake boundary condition is zero
concentration in a) and for continuity of flux at the
boundary in b). The introduction of contaminants
within the CDF at the start of the time period shown
will result in transport in and out of the adjacent dike

Fig. 6. Concentration transport: (a) soluble contaminant case with

cZ0 at the lakeside boundary; (b) case when the dispersive mass flux

ðn �D grad CÞ is zero at the lakeside.
wall as a result of the time-varying seepage flow. The
predicted contaminant concentration profiles within the
dike are initially similar but the difference in boundary
conditions is reflected within 10 days. In both cases,
however, complete penetration of the dike wall is seen
within 10 days given the period of observations of heads
between the lake and the CDF and the concentration
within the lake-side portion of the dike are essentially
identical to the concentrations within the CDF during
periods of outflow from the CDF.

4. Conclusions

The simulation model predicts the tidal effects on
a CDF, the dispersion of a dike, and the resultant rise in
contaminant transport characteristics in the dike. A
non-stationary tide dependent dynamic model of con-
taminant transport in a porous unconfined aquifer with
moving dynamic boundaries was proposed for this
problem.

A FEM numerical nonlinear solver algorithm was
developed. This numerical algorithm describes nonlinear
system dependence between flow geometry, other flow
characteristics, and contaminant concentration distri-
bution with the domain. An iterative process was used
for the simultaneous system solution sequence. The
model was shown to exhibit significant nonlinearities
associated with the free surface flow and tidal variations.

The capability of the model for reproducing flow and
transport was demonstrated by comparison to a time
series of water level measurements inside and outside
a CDF in Chicago, IL. The results showed that the
model could be used to simulate the observed water
levels and predict the resulting transport. The lake
boundary conditions influenced the transport results but
did not appreciably change the time lag between
introduction of contaminants into the CDF and release
into the surrounding water. No appropriate chemical
measurements were available to confirm the concentra-
tion predictions.

Appendix

Moving boundary conditions

To solve Eqs. (1) and (2), it is necessary that the
initial and boundary conditions in the area of interest be
specified as shown in Fig. 1.

In the most common solutions, the boundary vU of
the fluid region is fixed. In our problem this is not true,
and the unconfined aquifer is a principal part of our
investigation.

In a problem with an unconfined aquifer, the physical
nature of the upper ‘‘free’’ boundary Gup changes. Let us
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denote the unknown boundary between saturated and
unsaturated areas of interest as Gup : yZfðx; tÞ. On this
boundary, we need to satisfy both a dynamic condition
for flow pressure hZy and also a kinematics condition
which represents the mass conservation law on the free
surface (Kosorin, 2000; Rushton and Redshaw, 1979).

Consider vector
	
u; v



a flow flux vector on the free

boundary yZfðx; tÞas shown in Fig. 7. On Gup, the
solution of Eq. (1) needs to satisfy:

(1) a dynamic condition with the pressure at atmo-
spheric pressure:

Pðx;y; tÞjyZfðx;tÞZ0, hðx;y; tÞjyZfðx;tÞZy;

(2) a kinematics condition on the moving boundary
which follows from the mass conservation law on the
free surface. This surface movement compensates the
mass flow through the free surface in a normal
direction:
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where ðV/GÞn is normal to Gup the moving boundary
velocity component. In this we have
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moving boundary equation in a form (4) become:
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where Sy is the specific yield (effective porosity) of the
media. We do not assume the hysteresis effect in
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Fig. 7. The general flow flux vector
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, boundary normal n

/
and

boundary velocity vector V
/
G orientation on the free boundary

yZfðx; tÞ.
saturated–unsaturated boundary movements in this
study.
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