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Abstract

Cluster analysis of aerosol time-of-flight mass spectrometry (ATOFMS) data has been an effective tool for the

identification of possible sources of ambient aerosols. In this study, the clustering results of two typical methods, adaptive

resonance theory-based neural networks-2a (ART-2a) and density-based clustering of application with noise (DBSCAN),

on ATOFMS data were investigated by employing a set of benchmark ATOFMS data. The advantages and disadvantages

of these two methods are discussed and some feasible remedies proposed for problems encountered in the clustering

process. The results of this study will provide promising directions for future work on ambient aerosol cluster analysis,

suggesting a more effective and feasible clustering strategy based on the integration of ART-2a and DBSCAN.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Ambient particles have been shown to adversely
impact both environmental quality and human
health (Dockery et al., 1993), so it is becoming
more and more urgent to correctly identify the
sources of ambient particles. Aerosol time-of-flight
mass spectrometry (ATOFMS) is a novel and
effective aerosol analysis technique and its single
aerosol particle mass spectrometry data have been
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widely employed for aerosol source identification
via cluster analysis (Song et al., 1999). Among
various cluster analysis methods, a type of adaptive
resonance theory-based neural networks, called
ART-2a, seems the most popular tool for cluster
analysis of single particles’ mass spectrometry data,
because of its adaptive cluster nucleation and
expansion process (Fergenson et al., 2001; Zhao
et al., 2005). Recently, a novel cluster analysis
method based on a different grouping principle,
called density-based spatial clustering of application
with noise (DBSCAN), was introduced to the
cluster analysis of ATOFMS data and compared
with ART-2a (Ester et al., 1996; Zhou et al., 2006).
.
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However, without any information on particle
origins, the explanation of the clustering results was
mainly based on the physical interpretability of each
cluster center. Therefore, it was difficult to make a
full comparison of these two methods, particularly
because of the similarity of the mass spectrometry
data of the particles from similar sources and the
ambiguity of the categorization of these particles.

In this study, a set of benchmark ATOFMS data
(i.e., with a priori known source indexes) of the
ambient aerosols from six sources (gasoline emis-
sion, diesel emission, biomass burning, coal com-
bustion, sea salt and soil dust) are employed for a
complete and convincible comparison of the cluster-
ing by these two methods. The goal of this study is
to find advantages and disadvantages of these
methods, investigate feasible remedies for potential
problems of these methods, and provide some
suggestions and a feasible starting point for future
ATOFMS cluster analyses. However, it cannot be
guaranteed that this approach will always perform
better than any other method. Specific data sets may
require fine tuning of these procedures.

2. Methods

2.1. ART-2a

There are a number of reports involving the use
of ART-2a for the cluster analysis of single particle
mass spectrometry data (e.g., Song et al., 1999;
Bhave et al., 2001; Phares et al., 2001). For
ATOFMS data, the inputs of ART-2a usually are
the mass spectral data for each particle and the
output is the index of the class each particle belongs
to. Compared with most clustering methods, the
significant advantage of ART-2a is the ability to
add a new cluster without disturbing the existing
clusters, and thus, it has the potential to be used for
on-line data analyses.

The training algorithm for ART-2a is briefly
described below. The details are provided in the
literature (Carpenter et al., 1991; Zhao et al., 2005).
1.
 Randomly select an input vector and scale it into
unit length.
2.
 Compare the resonances between the input
vector and the cluster vectors of all existing
output neurons and determine the neuron with
the largest resonance as ‘‘winner’’. The resonance
is represented as the dot product of the input
vector and the existing cluster vector.
3.
 If the resonance of the winner neuron is larger
than a predefined vigilance factor (VF), rvig,
modify the cluster vector of the winner neuron
toward the input sample vector. Otherwise, create
a new cluster for this sample. The modification
process of the winner cluster center is

vij ¼
rij if wold

ðwinÞ;j4y

0 otherwise

(
(1)

ui ¼
vi

jjvijj
(2)

ti ¼ wold
win þ mðui � wold

winÞ (3)

wnew
win ¼

ti

jjtijj
(4)

where rij is the jth element of the ith normalized
training sample vector, wold

ðwinÞ;j is the jth element of
the winner cluster center vector, y is a predefined
threshold value, m is the learning rate, and wnew

win is
the modified winner cluster center vector.
4.
 Repeat the above steps for all the input vectors,
which is defined as one cycle, till reach a stopping
criterion.

In ideal cases, the criterion for stopping the
training of ART-2a is that the change between the
cluster vectors of two consecutive cycles is zero or
smaller than a pre-defined threshold value. How-
ever, in ATOFMS studies, it is almost impossible to
reach the above ideal criteria within a foreseeable
time period, so usually a limit is set on the maximal
number of cycles. The vigilance factor is a key
parameter to control the cluster number. An overly
large vigilance would result in an ‘‘overly fine’’
clustering result (the extreme case is one cluster for
one aerosol mass spectral sample) by generating
many homogeneous small clusters, while an overly
small vigilance would result in an ‘‘overly coarse’’
result. There is no general rule to determine a
‘‘correct’’ vigilance value. The initial cluster vectors
are randomly selected from the sample set and
scaled.

2.2. DBSCAN

Different from many cluster analysis methods
including ART-2a, DBSCAN performs a cluster
territory expansion process based on the density and
continuity of sample distribution. It is a one-step
cluster process employing a recursion procedure.
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Two parameters, neighbor number (k) and neigh-
borhood radius (e), control the entire clustering
process by examining if a current cluster territory
can be further expanded. If not, a new cluster will be
generated. The DBSCAN clustering process (Ester
et al., 1996) can be briefly described as follows. The
details of this algorithm can also be found in
Daszykowski et al. (2001, 2002).
1.
 Initialize the status of all samples to be unpro-
cessed.
2.
 Randomly choose an unprocessed sample as a
current sample, mark it as processed. If the
current sample is a ‘‘core’’ (a sample is a core
object, if in its neighborhood of radius e, there
are more than k samples), create a new cluster
and assign the current sample to it and go to ‘3’.
If not, move to the next unprocessed sample.
When all the samples are processed, terminate
the algorithm.
3.
 Find neighbors of the current sample within the
distance e, assign them to the cluster created in
step ‘2’, mark as processed, and transfer them to
‘seeds’ (a set of samples that have a potential of
further expansion).
4.
 For each sample in ‘seeds’, find its neighbors
within the neighbor radius. If they are not
processed, add them to ‘seeds’ and assign them
to the same cluster. Continue this expansion
process based on the sample density and con-
tinuity.
5.
 When all samples in ‘seeds’ are processed, go
back to ‘2’.

In ATOFMS cluster analysis, the similarity of
two particles is defined as the their dot product
rather than the Euclidean distance, so in this study,
Fig. 1. Schematic illustration of the difference between t
unless specifically indicated, neighborhood radius
(e) denotes dot product of particle mass spectral
vectors. Higher e values produce smaller neighbor-
hood areas.
2.3. Comparison of ART-2a and DBSCAN

It is clear that these two algorithms represent two
different clustering processes. The major difference
between them is that DBSCAN not only considers
the distance (similarity) between samples but also
takes into account the continuity of sample loca-
tions in the measured variable space. As a schematic
illustration, Fig. 1 shows an extreme case to show
the advantages of DBSCAN. Clearly, DBSCAN is
able to cluster the samples that have a continuous
distribution into one group, while ART-2a divides
each group into three small groups based on
the sample similarity (distance). The DBSCAN
algorithm is a deterministic one-step process. For
ART-2a, the initialization, in terms of the order in
which the objects are presented to the program,
may have some effect on final cluster centers, since
convergence may be achieved at slightly different
locations depending on the order in which the
particles are analyzed.

Because of the possible mixing and aging of the
particles during the transportation and the similar-
ity among the particles from different origins, the
distributions of the particle data from the same
origin could be deformed and the distributions for
the particles from various sources could be quite
much entangled. The complexity of the ATOFMS
data distribution encourages the exploration of
various methods for cluster analysis. Zhou et al.
(2006) found that DBSCAN is better able to define
clusters with varying shapes and sizes that may be
he clustering principles of ART-2a and DBSCAN.
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more representative of real world aerosols. In this
study, ART-2a and DBSCAN are applied to a set of
benchmark ATOFMS data to see which method is
better able to separate the particles into groups that
can be associated with specific sources, if there are
any remedies for possible problems of these
methods, and if these two methods could supple-
ment each other.

3. Sample description

The data employed for this study were a set of
benchmark ATOFMS data (i.e., with a priori
known source indexes) from six sources (gasoline,
diesel, biomass burning, coal combustion, sea salt
and soil dust). Each source provided 1600 particle
samples and each sample was composed of both
positive ions with the charge from +1 to +350 and
negative ions with the charge from �1 to �350. The
positive and negative ions were concatenated to
form a 700 dimensional feature vector.

The gasoline and diesel emission particle samples
were randomly selected from the ultrafine particles
(aerodynamic diameter (Da) o100 nm) produced in
the dilute exhaust from vehicles operating on a
chassis dynamometer. The collection and measure-
ment processes are described by Sodeman et al.
(2005) and Toner et al. (2006).

The particles from the other sources were in the
500–1000 nm size range. Biomass and coal burning
particles were collected from laboratory tests,
whereas dust and sea salt particles were taken from
clusters made using ART-2a run on ambient data
taken in Trinidad Head, CA, in April 2004.

To ensure that there is comparability in the
particle characterization in different studies, rigor-
ous QA procedures are employed in the ATOFMS
measurements. Size calibrations are performed on a
daily basis with multiple known sizes of polystyrene
latex (PSL) particles into the ATOFMS. During
ambient measurements, hourly scaling curves are
derived to measure particle detection efficiencies by
comparing ATOFMS counts to those from external
size distribution measurements (APS, SMPS). These
comparisons with other measurements test whether
the instruments remain stable since the curves are
not expected to change over time. In addition,
pressures and flow rates in the ATOFMS are
monitored continuously. To ensure that the mass
spectral sensitivities remain the same from study to
study, PSL particle standards of known size are
used to generate mass spectra. The intensities are
optimized by adjusting the voltage settings on the
mass spectrometer so the same absolute ion
response is obtained for each study to allow direct
comparison of the spectra between studies. These
checks insure stable sizes, mass spectral peak
intensities, and constant ion transmission as a
function of size into the ATOFMS instruments,
critical checks to allow comparisons to be made
between studies.
4. Results

4.1. Criterion for cluster comparison

The objective of this study is to compare the
clustering results of two methods by employing a set
of benchmark data. In order to have a quantitative
comparison, a reasonable criterion needs to be
designed. Table 1 presents a clustering result as an
example to demonstrate the criterion used in this
study.

It is almost unavoidable to generate some small
clusters that contain only a few particles because of
the complex and entangled distribution of single
particle mass spectra. However, these minor clusters
may not be very helpful in characterizing the
sources even if they have a very high accuracy
(an extreme case for a minor cluster is one particle
in one cluster). Therefore, in this study, only the
clusters containing at least 80 particles (i.e., 5% of
the 1600 sample particles from each source) were
included in the comparisons and called ‘‘significant’’
clusters while those containing o80 particles were
called ‘‘minor’’ clusters and excluded from the
evaluation of clustering result. Then each significant
cluster was attributed to one of the six sources
according to the categorization of the dominant
part of samples in this cluster. For example, the first
cluster in Table 1 was attributed to gasoline
emission, because 750 of 1198 particles were from
gasoline emissions.

Assuming there are n significant clusters that
can be attributed to one source, the criterion to
evaluate the clustering result on this source can be
expressed as

S ¼
Xn

i¼1

ci

Li

ci

1600

� �
(5)

where S is the score of the clustering result on this
source, ci is the number of matched samples of the
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Table 1

Significant clusters obtained by ART-2a (vigilance factor ¼ 0.5)

Cluster index No. of samples No. of samples matched to each source

Gas Diesel Biomass Sea salt Coal Soil dust

1 1198 750 143 105 0 200 0

2 932 0 12 3 870 47 0

3 843 41 6 4 3 55 734

4 735 129 2 24 0 578 2

5 631 1 0 1 0 0 629

6 523 1 1 499 1 18 3

7 501 0 3 426 0 71 1

8 473 62 405 3 2 1 0

9 391 3 2 294 0 89 3

10 389 2 0 1 386 0 0

11 299 30 17 43 1 205 3

12 297 6 291 0 0 0 0

13 290 161 21 1 0 107 0

14 288 25 263 0 0 0 0

15 170 0 1 1 167 1 0

16 143 1 0 0 1 16 125

17 137 28 37 4 1 65 2

18 106 105 1 0 0 0 0

19 97 0 1 92 0 4 0

20 96 21 52 14 0 9 0

21 85 18 67 0 0 0 0

22 83 0 1 2 1 79 0
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dominant source for cluster i, Li is the number of all
the samples in cluster i, 1600 is the sample number
of each benchmark source. ci/Li is the direct
accuracy of cluster i, and ci/1600 is the weight for
this direct accuracy. Thus, a cluster containing
more matched dominant particles makes a greater
contribution to the accuracy for this observed
source. Clearly, the ideal highest score for a source
is ‘‘1’’ that corresponds to a single cluster or a
number of significant clusters that cover all the
particles from one source and do not contain any
particles from any of the other sources. The
objective of this paper is to find a method to make
the clustering accuracy as close to ‘‘1’’ as possible.
As an example, the clustering accuracy of the soil
dust source in Table 1 can be calculated by summing
up 734/843� 734/1600 (cluster 3), 629/631�
629/1600 (cluster 5) and 125/143� 125/1600 (cluster
16), which equals 0.86. Similarly, applying this
criterion to the soil dust source in Table 2
(VF ¼ 0.9) can give us a clustering accuracy of
0.17 by summing up 101/101� 101/1600 (cluster 5),
84/84� 84/1600 (cluster 12), and 81/81� 81/1600
(cluster 13). The reason for the sharp decrease of the
soil dust will be discussed later and this type of poor
result will be termed a ‘‘crashed’’ cluster result. The
cluster result for the whole system (i.e., for the six
sources) is the mean value of the scores for the six
sources.

Because it is almost unavoidable that the particles
from one source will group into multiple clusters, the
above criterion does not pay particular attention to
the potential difference caused by the number of
significant clusters. For example, the result in which
1600 samples are grouped into two clusters and that
in which 1600 sample are grouped in three clusters
are considered to represent the same quality of result.

4.2. Clustering results for ART-2a

Fig. 2 shows the clustering results of ART-2a.
The corresponding system average accuracies for
different vigilance factors (from 0.4 to 0.9) in Fig. 2
are 0.63, 0.65, 0.65, 0.61, 0.47, and 0.14, respec-
tively. It can be seen that ART-2a with the vigilance
factors being 0.5 and 0.6 yield the best clusters. The
sources of soil dust, coal combustion, and biomass
burning show the highest accuracies. One possible
reason could be that these three sources have some
dominant and stable inorganic or metal ions that
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Fig. 2. Clustering efficiency of ART-2a (the system average accuracies for different vigilance factors (from 0.4 to 0.9) are 0.63, 0.65, 0.65,

0.61, 0.47, and 0.14, respectively).

Table 2

Significant clusters obtained by ART-2a (vigilance factor ¼ 0.9)

Cluster index No. of samples No. of samples matched to each source

Gas Diesel Biomass Sea salt Coal Soil dust

1 135 26 0 1 0 108 0

2 120 0 0 120 0 0 0

3 104 0 0 104 0 0 0

4 102 0 0 99 0 3 0

5 101 0 0 0 0 0 101

6 99 1 0 0 98 0 0

7 98 0 0 0 98 0 0

8 92 0 0 0 92 0 0

9 92 0 0 0 92 0 0

10 88 0 1 86 0 1 0

11 86 0 0 0 86 0 0

12 84 0 0 0 0 0 84

13 81 0 0 0 0 0 81

14 80 0 0 0 80 0 0
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can relatively easily distinguish these sources from
the others. For other sources like coal combustion,
as shown in Table 1, these clusters only cover about
half of the total 1600 samples although some of
their significant clusters have good direct accuracies.
Therefore, the accuracies for these sources are just
�50% for the case of the vigilance factor being 0.5
or 0.6.

The clustering results decreased significantly
with an increase of the vigilance factor (such as
0.8 and 0.9). Table 2 shows the results of ART-2a
(VF ¼ 0.9). It can be seen from this table that the
significant clusters only cover a small fraction of the
particles and most particles are grouped into minor
clusters that are not qualified to be evaluated. The
sources of gasoline and diesel emission do not have
any significant clusters, so their accuracies are zero.
Clearly, an overly high vigilance factor could result
in a ‘‘crashed’’ clustering result that does not
represent a good cluster result since all of the
particles from a single source are expected to fall
into a limited number of clusters.
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4.3. Regrouping analysis for ART-2a

In ART-2a, a sample that does not belong to any
existing cluster is classified into a new cluster. During
the following training process, this new cluster will
only expand but never be merged with its neighbor
cluster, even if the gradually modified center of this
new cluster is very similar to its neighbor cluster (i.e.,
the dot product of these two cluster centers is larger
than the vigilance factor). Therefore, some clusters
generated by ART-2a could have a significant
overlap between their sample distribution spaces,
and this problem could be more severe in the cases
with high vigilance factors.

A possible remedy for this problem is to regroup
ART-2a clusters with the same vigilance factor. In
regrouping analysis, any two cluster centers whose
similarity (dot product) is larger than the vigilance
factor are merged to form a new cluster center using
the number of samples in each cluster as the
weights. The newly formed cluster center is com-
pared with other centers and the whole regrouping
process continued until there are no overly similar
(i.e., dot product4vigilance factor) cluster centers.
Then, all the particles are re-matched to all the
new cluster centers based on the same vigilance
factor. The results of the regrouping analysis in this
study are shown in Fig. 3 and the corresponding
average system clustering accuracies are 0.59
(VF ¼ 0.6), 0.59 (VF ¼ 0.7), 0.62 (VF ¼ 0.8), and
0.49 (VF ¼ 0.9), respectively.
Fig. 3. Clustering efficiency of ART-2a integrated with regrouping ana

(from 0.6 to 0.9) are 0.59, 0.59, 0.62, and 0.49, respectively).
Comparison with Figs. 2 and 3 shows that the
regrouping analysis significantly improved the
clustering results for ART-2a with relatively high
vigilance factors (like 0.8 and 0.9) by regrouping
small and minor clusters. As an example, Table 3
shows the regrouping analysis results of VF ¼ 0.9.
It can be seen from the comparison with Table 2
that the regrouping analysis reunited the small and
minor clusters into bigger and significant clusters.
This reunion resulted in an increase in the clustering
accuracy.

However, the regrouping analysis seems to have
an adverse effect on the results of lower vigilance
factors. For the vigilance factor (VF) ¼ 0.6 (Fig. 3),
the regrouped cluster pattern for coal combustion
particles sharply decreased from the cluster
result of the ART-2a alone. One possible reason is
that the regrouping analysis combined some
coal combustion clusters with some clusters of
other similar sources because of their similar
distribution spaces. The regrouping analysis pro-
vides a feasible improvement for the ATOFMS
cluster analysis and shows the ability to recover
from ‘‘crashed’’ cluster results caused by a high
vigilance factor.

4.4. Clustering results for DBSCAN

DBSCAN uses two key parameters to control its
clustering behavior. Neighborhood radius (e) per-
forms similarly to the vigilance factor for ART-2a
lysis (the system average accuracies for different vigilance factors
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Table 3

Significant clusters obtained by ART-2a integrated with regrouping analysis (vigilance factor ¼ 0.9)

Cluster index No. of samples No. of samples matched to each source

Gas Diesel Biomass Sea salt Coal Soil dust

1 632 471 79 49 0 33 0

2 536 4 0 1 0 0 531

3 433 75 0 14 0 344 0

4 382 0 0 0 382 0 0

5 288 0 0 0 0 0 288

6 281 0 0 269 0 12 0

7 274 29 244 0 1 0 0

8 250 0 1 225 0 24 0

9 230 0 0 229 0 0 1

10 227 151 7 1 0 68 0

11 199 0 0 0 199 0 0

12 190 0 190 0 0 0 0

13 182 0 0 0 182 0 0

14 165 0 0 0 0 0 165

15 155 0 0 0 0 0 155

16 148 0 148 0 0 0 0

17 143 1 0 0 142 0 0

18 133 0 0 0 133 0 0

19 123 0 0 120 0 3 0

20 116 1 0 1 0 114 0

21 112 14 2 28 1 67 0

22 88 0 0 0 88 0 0

23 83 0 0 83 0 0 0

24 80 0 0 0 0 0 80

Table 4

Clustering effect of DBSCAN

e k Clustering accuracy

Gas Diesel Biomass Sea salt Coal Soil dust Average

0.7 400 0.05 0.52 0 0.83 0.05 0.24 0.28

0.7 600 0.44 0.58 0.43 0.83 0 0.83 0.52

0.7 800 0.39 0.58 0.46 0.83 0 0.83 0.51

0.8 100 0.27 0.17 0.69 0.82 0 0.9 0.48

0.8 300 0.37 0.46 0.65 0.8 0.38 0.85 0.58

0.8 500 0.36 0.44 0.61 0.76 0.25 0.85 0.55

0.9 20 0.05 0.35 0.63 0.83 0.2 0.8 0.48

0.9 30 0.3 0.29 0.62 0.81 0.31 0.87 0.53

0.9 50 0.3 0.23 0.53 0.8 0.27 0.87 0.50
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and neighbor number (k) helps check the density
and continuity of sample distribution space.

The clustering accuracies over a range of e and k

values are shown in Table 4. For each given
neighbor radius (e), the clustering accuracies for
most sources and the entire system increased and
then they decreased as the neighbor number (k)
increased further. A small value of neighbor number
(k) could result in a mixture of clusters from
different sources while a large value of k could lead
to an overly fine or even ‘‘crashed’’ clustering result
because of an overly strict criterion. Both cases
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could influence the clustering results. In addition,
the examination of the best system clustering
result for each given e shows that the highest
system accuracy is obtained for e ¼ 0.8 that suggests
that e appears to have a more important role
in controlling the clustering than the neighbor
number (k).

The best clustering result of DBSCAN in this
figure is obtained when e and k equal 0.8 and 300,
respectively, but it is still poorer than the best
results of the ART-2a-based methods. Therefore,
it could be inferred that the distribution of
ATOFMS objects does not resemble the schematic
case in Fig. 1. Thus, DBSCAN does not provide as
substantial advantages for ATOFMS data as had
been suggested by Zhou et al. (2006).

4.5. Clustering results for ART-2a integrated with

DBSCAN

Fig. 3 indicates that the ‘‘crashed’’ clustering in the
ART-2a analysis with a high vigilance factor can be
recovered by employing a regrouping process that
suggests investigating if DBSCAN has a similar (even
better) function to recover the ‘‘crashed’’ clustering
results for ART-2a. The assumption for this experi-
ment is if the centers of some clusters can be grouped
based on the density and continuity by DBSCAN,
the samples in these clusters should also be grouped.
The results obtained by ART-2a with the vigilance
factors being 0.7, 0.8, and 0.9 were used to check the
effect of the integration of ART-2a with DBSCAN.

Table 5 shows the results of this integration
strategy. The neighbor radius (e) values were set to
be the same as the vigilance factor for ART-2a, as
Table 5

Clustering effect of ART-2a integrated with DBSCAN

VF e k Clustering accuracy

Gas Diesel Biomas

0.7 0.7 3 0.07 0.24 0.7

0.7 0.7 10 0.41 0.55 0.71

0.7 0.7 50 0.41 0.55 0.71

0.8 0.8 5 0.14 0.25 0.7

0.8 0.8 20 0.42 0.52 0.72

0.8 0.8 80 0.42 0.52 0.72

0.9 0.9 5 0.31 0.41 0.61

0.9 0.9 10 0.39 0.37 0.55

0.9 0.9 150 0.39 0.36 0.55
they have a similar function. The clustering
efficiencies in Table 5 are all significantly better
than the corresponding results of the sole ART-2a,
demonstrating the result of DBSCAN on reuniting
the small (overly fine, even ‘‘crashed’’) clusters
generated by ART-2a with high vigilance factors.
Moreover, the best clustering result for each
vigilance factor (or neighbor radius) in this table
are better than the corresponding result of the ART-
2a integrated with regrouping analysis.

In addition, for each neighbor radius (e), the
clustering accuracies of most sources and the entire
system first are increased along with the increase on
the neighbor number (k) but are not significantly
changed after k reaching a level. (For example,
for the case of VF ¼ 0.8 and e ¼ 0.8, there is no
salient change of the clustering accuracy while k

gradually increasing from 20 to 80.) This changing
trend could indicate that (1) a small k value could
increase the clustering result through cluster re-
union, but it could result in excessively reunited
clusters, and (2) an increase of k value could
gradually solve the reuniting problem ultimately
yielding a better clustering result. This table also
shows that various e values have the different best
clustering accuracies. Assuming that the current
search ranges for k cover the most of the areas in
which clustering accuracy would significantly
change, this result further supports the conclusion
that e has a more dominant role in controlling
cluster effect than k.

All the results in Table 5 indicate that DBSCAN
may be a more effective and robust post-processing
strategy for ART-2a with high vigilance factors
than regrouping analysis.
s Sea salt Coal Soil dust Average

0.84 0.25 0.84 0.49

0.84 0.43 0.89 0.64

0.84 0.43 0.89 0.64

0.83 0.32 0.88 0.52

0.83 0.46 0.91 0.64

0.83 0.46 0.91 0.64

0.72 0.12 0.85 0.50

0.72 0.36 0.76 0.52

0.72 0.36 0.73 0.52
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5. Discussion

Four methods have been employed to test the
clustering results on the ATOFMS data. In order to
review and evaluate the results of these methods, a
principal component analysis was performed on the
ATOFMS data employed in this study. The first
three principal components are shown pairwise in
Fig. 4 although they cannot completely and directly
reflect the distribution of the ATOFMS samples. It
can be seen that soil dust and sea salt are relatively
well separated while the distribution of the other
four sources overlap and are mutually quite much
entangled.

The distributions shown in Fig. 4 support the
following results of this study: (1) all the methods
give the best clustering results for the soil dust and
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Fig. 4. Distribution of the first three principal components of the

particle samples from the six sources (top: the first component vs.

the second component; bottom: the first component vs. the third

component).
sea salt sources while the effects on the other sources
are just about 50% or even lower; (2) DBSCAN
does not show its specific advantages, probably
because the highly overlapped distributions of the
different sources could lead DBSCAN in the wrong
direction (i.e., the space of a different source); and
(3) none of the methods shows a significantly
superior clustering result on the entire system
composed of six sources.

DBSCAN is a one-step territory expansion
process while ART-2a is an iterated process in
which all the samples need to be compared with the
cluster centers generated in each cycle. Therefore,
DBSCAN could use (much) less computation time
than ART-2a. Regrouping analysis is a straightfor-
ward cluster merging process without any iteration
steps, so there is no significant difference between
the regrouping analysis and DBSCAN in terms of
computation time when they are used to post-
process ART-2a preliminary results.

Although it is almost impossible to find a set of
fixed parameters or rules that could be directly
generalized to other studies, some suggestions are
summarized below for a wide spectrum of applica-
tions of the methods investigated in this study. No
matter whatever methods are used, one important
key for a cluster analysis of ATOFMS data without
known origins is the interpretability of the cluster
centers. Interpretability is unfortunately subjective.
For example, depending on the users, either a result
in which gasoline and diesel emissions are clustered
into two separated groups or a result in which they
are grouped into a single class called mobile
emissions could be acceptable.

For ART-2a, both a relatively small vigilance
factor (like VF ¼ 0.5 or 0.6 in this study) and a
relatively high vigilance factor (like VF ¼ 0.8 in this
study) followed by a regrouping analysis show the
almost equivalent clustering. A similar result in
which small vigilance factors (VF ¼ 0.4 and 0.5)
yielded an interpretable clustering result for 50,000
or so ATOFMS samples collected in NYC was
reported in Zhou et al. (2006). However, as
discussed before, this current study also shows there
is still some similarity (over the predefined vigilance
factor) between the cluster centers obtained with
the small vigilance factor that may indicate that
solely regrouping analysis could seem to be neces-
sary for both high and low vigilance factors to
overcome possible over-similarity among the gener-
ated cluster centers. Therefore, considering the
regrouping analysis could make the result obtained
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with a small vigilance factor worse, it is suggested to
use a relatively high vigilance factor followed by
regrouping.

For DBSCAN, the neighbor radius (e) has a
similar function to the vigilance factor in ART-2a,
so it is suggested to begin with a relatively high
value like 0.7 or 0.8. The clustering of DBSCAN is
based on the co-action of the neighbor radius (e)
and the neighbor number (k). As shown in Table 4,
a larger e value makes a sample (object) have fewer
neighbors, so a relatively smaller k value may be
required for good clustering.

Since DBSCAN did not show its advantages
when it was directly applied to the ATOFMS data
in this study, feasible suggestions will be provided to
use DBSCAN as a post-processing approach for the
ART-2a results. First, continue using the vigilance
factor for ART-2a as the e value for DBSCAN.
As discussed in Section 4 of the ART-2a and
DBSCAN-integrated method, after k reaches some
level, further increases in k do not significantly
increase the clustering accuracy. Therefore, it seems
to be a good choice to select a relatively large value
(like one-tenth of the cluster number of ART-2a or
even higher) as the k value for post-processing.

Various evaluation criteria could show slightly
different comparison results of clustering results.
The criterion used in this study fairly evaluated the
clustering of each method, considering both the
direct accuracy of each cluster and the modification
weight based on the percentage of the matched
dominant samples over the all 1600 samples of that
matched source.

6. Conclusions

The benchmark samples employed in this study
cover some major sources of ambient aerosols and
reflect the real spatial distribution of most particles
from these sources, so the results of this study could
be applied to other real ATOFMS cluster analyses.
This study examined the clustering results of various
methods by employing a set of benchmark
ATOFMS data. The ART-2a-based approaches
show better initial clustering results than the usage
of DBSCAN alone. The territory expansion princi-
ple of DBSCAN largely prevented the overlap of
generated cluster spaces, but it does not show its
specific advantages in this study because of the
complex and entangled distribution spaces of the six
sources. A proper vigilance factor can produce a
reasonable ART-2a clustering result, but an overly
fine or ‘‘crashed’’ clustering result for ART-2a with
a high vigilance factor can be recovered by a post-
processing strategy. DBSCAN seems to be more
effective and robust in post-processing than the
regrouping analysis. Thus, a recommended ap-
proach is to begin the analysis with ART-2a with
a relatively high vigilance factor (40.7) and regroup
the clusters using DBSCAN.
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