Spatial distributions of Cryptosporidium parvum oocysts in columns packed with uniform glass-bead collectors were measured over a broad range of physicochemical conditions. Oocyst deposition behavior is shown to deviate from predictions based on classical colloid filtration theory (CFT) in the presence of repulsive (unfavorable) colloidal interactions. Specifically, CFT tends to predict greater removal of oocysts (less transport) than that observed in controlled laboratory experiments. Comparison of oocyst retention with results obtained using polystyrene latex particles of similar size suggests that mechanisms controlling particle deposition are the same in both systems. At a given ionic strength, the deposition of Cryptosporidium oocysts is generally greater than that of the microspheres; however, this discrepancy is partly attributable to large differences in oocyst and microsphere zeta potentials. A dual deposition mode (DDM) model is applied which considers the combined influence of “fast” and “slow” oocyst deposition due to the concurrent existence of favorable and unfavorable oocyst-collector interactions. Model simulations of retained oocyst profiles and suspended oocyst concentration at the column effluent are consistent with experimental data. Because classic CFT does not account for the effect of dual mode deposition (i.e., simultaneous “fast” and “slow” oocyst deposition), these observations have important implications for predictions of oocyst transport in subsurface environments, where repulsive electrostatic interactions predominate. Supporting elution experiments further suggest that specific surface interactions between oocyst wall macromolecules and the glass bead collectors could retard or even completely inhibit oocyst release upon perturbation in solution chemistry.

Introduction

Cryptosporidium parvum (C. parvum) has been identified as one of the most challenging microbial pathogens found in drinking water and is associated with a high risk of waterborne illness (1, 2). This protozoan parasite is transmitted via the fecal-oral route in its environmentally resistant stage—the oocyst (1, 3, 4). Ingestion of a small number of viable oocysts (as little as 10) can lead to cryptosporidiosis, a diarrheal disease that is potentially lethal for immunosuppressed individuals (1, 2, 5, 6). Over the past two decades, several outbreaks of cryptosporidiosis related to both groundwater and surface water contamination have been reported in Europe and North America (3, 7, 8).

Resistance of the C. parvum oocyst to conventional disinfection processes (i.e., chlorination) poses a significant challenge to the protection of drinking water supplies from contamination (2, 9–11). As a result, water utilities are showing increased interest in oocyst removal in porous media, such as riverbank filtration, deep-bed (granular) filtration, and slow-sand filtration, to control drinking water quality (12–14). Moreover, there is a heightened interest in the use of surrogates to aid in monitoring pathogen transport in these environments, and thus comparison of oocyst removal with that of nonbiological particles is also useful. However, the mechanisms governing the transport and filtration behavior of C. parvum oocysts in these settings are not understood well enough to allow the development of predictive models for oocyst removal. For instance, a recent study showed that physical straining due to irregularity of grain shape plays an important role in the filtration of C. parvum oocysts in natural porous media (15). Yet, the influence of straining on particle removal is not considered in models commonly used to predict colloid transport in saturated porous media.

The transport and deposition behavior of colloidal particles in porous media—including microorganisms such as C. parvum oocysts—has traditionally been investigated using packed columns via measurements of the effluent fluid-phase particle concentration (16–28). Recent theoretical and experimental studies suggest that the shape of the retained profile of particles in column transport experiments can be a key indicator of particle removal mechanisms (29–31). In effect, researchers have examined the spatial distributions of retained microorganisms (e.g., bacteria and viruses) (32–37) in packed columns and shown that microbe deposition is generally inconsistent with classical colloid filtration theory (CFT)—the most commonly used approach for predicting particle deposition behavior in saturated porous media (38). Li et al. (39) broadened the scope of this issue by demonstrating deviation from CFT using nonbiological, latex colloids in the presence of repulsive electrostatic interactions. To further examine the validity of the classical CFT, Tufenkji and Elimelech (29, 31) conducted experiments using different-sized polystyrene latex particles in columns packed with spherical soda-lime glass beads over a broad range of physicochemical conditions. These studies revealed that in the presence of repulsive colloidal interactions (i.e., under conditions deemed unfavorable for deposition), secondary minimum deposition and particle retention on surface charge heterogeneities cause significant deviation from CFT (29, 31). Such investigations emphasize the importance of examining the profile of retained particles in column transport studies in an effort to better understand the mechanisms of particle removal in porous media (29–31, 39).

Although a number of studies have examined the spatial distributions of retained bacteria and viruses in packed-beds (32–37), such measurements are scarce in the literature regarding protozoan transport. Harter et al. (40) presented profiles of retained C. parvum oocysts in columns packed with natural sands and sediments. However, these experiments were conducted under relatively favorable conditions...
for deposition, and therefore cannot be used to gain insight into the potential deviation from CFT in the presence of repulsive colloidal interactions. Mawdsley et al. (41) examined the distribution of *C. parvum* oocysts in columns packed with three different soil types, but these experiments were designed to simulate rainfall conditions and are therefore not consistent with classical CFT which is valid for saturated porous media only. Furthermore, in such physically and geochemically heterogeneous natural sediments, additional factors that are not accounted for in CFT may contribute to oocyst removal (e.g., physical straining, predation, and loss of viability) (41).

Deposition experiments carried out with *C. parvum* oocysts under well-controlled physicochemical conditions, in columns packed with uniform, spherical glass-bead collectors, can provide an improved mechanistic understanding of oocyst deposition. In particular, measurements of the spatial distribution of oocysts in the packed-bed can be used to verify how the deposition behavior of *C. parvum* deviates from predictions based on classical CFT. Tufenkji and Elimelech (31) recently demonstrated how spatial distributions of latex particles in packed columns are well described using a dual deposition mode (DDM) model which considers the combined influence of “fast” and “slow” particle deposition. Although the DDM model is in good agreement with measured concentrations of retained latex particles in columns packed with glass beads, this approach has not been tested with results of experiments involving microbes (e.g., *C. parvum* oocysts).

In this paper, we present well-controlled experiments with *C. parvum* oocysts and columns packed with spherical glass beads where we measure both the spatial distribution of retained oocysts and the suspended oocyst concentration over a broad range of physicochemical conditions. Comparison of oocyst retention with results obtained using similar-sized polystyrene latex particles suggests that the mechanisms controlling the observed deviation from CFT are the same in both systems. Furthermore, the validity of the DDM model in predicting the deposition behavior of *C. parvum* oocysts in porous media is assessed. Application of the DDM model suggests that the observed deviation from classical CFT is controlled by the combined influence of both “fast” and “slow” oocyst deposition; that is, a distribution in oocyst-collector interactions.

Materials and Methods

Porous Media. Spherical soda-lime glass beads (Class V, MO—SCI Corporation, Rolla, MO) were utilized as model collector grains. The manufacturer reported the average diameter of the glass beads as 0.328 mm. This grain size was selected to prevent possible straining of *C. parvum* oocysts during transport experiments (15). The glass beads are mainly composed of silica (70%) and other metal oxide impurities as reported previously (31). The glass beads were thoroughly cleaned to remove grease and other impurities as we described elsewhere (31).

Cryptosporidium Oocyst Source and Preparation. Viable oocysts were obtained from the Sterling Parasitology Laboratory (SPL) at the University of Arizona. The oocysts were shed from a calf infected with the Iowa isolate from Dr. Harley Moon (National Animal Disease Center, Ames, Iowa). Oocysts were purified (at SPL) using discontinuous sucrose and cesium chloride centrifugation gradients and stored (in the dark at 4 °C) in an antibiotic solution (0.01% TWEEN 20, 100U of penicillin, and 100 μg of gentamicin per mL). Before conducting experiments, oocysts were pelleted by centrifugation (12 000 rpm, 8050g for one minute), and the supernatant was replaced with 1 mL of deionized water (DI) (Nanopure Infinity, Barnstead Thermolyne Corporation, Dubuque, IA). This step was repeated twice to remove any trace of the antibiotic solution. Purified oocysts were diluted to the desired concentration (2 × 10^6 oocysts/mL) in the electrolyte solution of interest prior to experiments.

Model Particles. Surfactant-free fluorescent polystyrene latex particles (EX 490 nm, EM 515 nm, Interfacial Dynamics Corporation, Portland, Oregon) with carboxyl-modified functional groups were used as model particles that can be compared to the oocyst deposition behavior. The monodispersed particles have a mean diameter of 3.0 μm and a density of 1.055 g/cm^3, as described elsewhere (29, 31). These particles were selected to be of comparable size to the *C. parvum* oocysts.

Solution Chemistry. Analytical reagent-grade KCl (Fisher Scientific) and DI water were used to prepare electrolyte solutions. Salt concentrations were varied over a wide range of ionic strengths (1–300 mM) so that favorable and unfavorable deposition could be studied. The pH of the suspensions was adjusted to 8 by addition of KHCO_3 (1 mM).

Electrokinetic Characterization of Oocysts, Particles, and Collectors. Microelectrophoresis (ZetaPALS, Brookhaven Instruments Corporation, Holtsville, NY) was used to characterize the electrokinetic properties of the *C. parvum* oocysts and latex particles over the range of ionic strengths used in the column experiments. Electrophoretic mobility was measured at 25 °C (± 1 °C) using particle or oocyst suspensions (4.7 × 10^5 particles/mL) prepared in the background electrolyte of interest. Zeta potentials were calculated from the measured electrophoretic mobilities using the Smoluchowski equation (42). The electrokinetic properties of the glass beads were measured over the range of solution conditions used in the column experiments as described elsewhere (31).

Size Determination of Cryptosporidium Oocysts. The nominal size of the *C. parvum* oocysts was determined by analyzing images taken in an inverted fluorescent microscope operating in phase contrast mode at 63 × magnification (Axiovert 200m, Zeiss, Thornwood, NY). Ten microliters of an oocyst suspension (10^6 oocysts/mL at 30 mM ionic strength) was placed on a microscope slide and several images were recorded. Using an image processing program (ImageJ, NIH), the average diameter of the spherical oocysts was determined to be 4.3 ± 0.4 μm.

Deposition Experiments. Transport experiments were conducted by pumping a suspension of *C. parvum* oocysts or polystyrene latex particles through a glass chromatography column packed with clean soda-lime glass beads. An adjustable-height column (C 16/20, Amersham Biosciences, Piscataway, NJ) with an inner diameter of 1.6 cm was used. The soda-lime glass beads were wet-packed to a height of 12.6 cm with vibration to minimize any layering or air entrapment. Standard gravimetric methods were used to determine the glass bead density (2.43 g/cm^3) and a column packing porosity of 0.37.

The packed column was equilibrated by pumping (Model 200 syringe pump, KD Scientific Inc., New Hope, PA) 20 pore volumes of the background electrolyte solution through the column at a constant approach (superficial) velocity of 8.3 × 10^{-3} cm/s. A suspension of *C. parvum* oocysts of the same background electrolyte composition was pumped for 2.8 pore volumes followed by an oocyst-free background electrolyte solution (2.8 pore volumes). A constant influent oocyst concentration (C_i) was maintained by including a miniature magnetic stir-bar in the oocyst solution syringe. Similar deposition experiments were also conducted using latex particles of comparable size to the *C. parvum* oocysts. Particle concentrations at the column outlet was monitored on-line using optical density measurements (at 330 and 360 nm for *C. parvum* oocysts and latex particles, respectively) with a UV/visible spectrophotometer (Helewitt-Packard Model 8453).
and a 1 cm flow-through cell. The influent oocyst concentration was maintained constant in all experiments \((C_0 = 2 \times 10^6 \text{ oocysts/mL})\). This oocyst concentration corresponds to an absorbance of 0.32 at 360 nm. To obtain optimal elution pulses, to determine the fraction of released oocysts \((\text{KOH})\). The total number of oocysts or latex particles released column, followed by an injection of a pH 11 solution \((1 \text{ mM KOH})\) was first pumped through the column, followed by an injection of a pH 11 solution \((1 \text{ mM KOH})\). The total number of oocysts or latex particles released \((N_{\text{rel}})\) was calculated by numerically integrating the particle breakthrough curve \((N_{\text{rel}})\) in the absence of repulsive interaction energies, i.e., \(\alpha = \eta/\eta_0 \) evaluated from solution of the convective-diffusion equation in the absence of repulsive interaction energies, i.e., \(\alpha = \eta/\eta_0 \) evaluated from solution 1. Column Dissection and Enumeration of Retained Oocysts and Particles. After completing an oocyst deposition experiment, the packed bed was dissected into sections to obtain the spatial distribution of \(C. \text{parvum} \) oocysts in the column. The bottom end-piece was removed without disturbing the packed bed, and the porous medium was extruded in 1-cm wide sections by gravity. The packed bed remained saturated with electrolyte solution during the entire extrusion process so as not to shift or cause release of retained oocysts. This procedure was also carried out for column deposition experiments conducted with polystyrene latex particles.

Retained oocyst and latex particle concentrations in each packed-bed section were determined using a fluorescent microscope as described elsewhere \((31)\). In experiments conducted with \(C. \text{parvum} \) oocysts were stained with FITC (fluorescein isothiocyanate) monoclonal antibody (Meridian Scientific, Cincinnati, OH) prior to counting in the fluorescent microscope. At the conclusion of each experiment, the soda-lime glass beads were discarded.

In each experiment, the mass balance of \(C. \text{parvum} \) oocysts or latex particles was determined by comparing the number of deposited particles calculated from integrating the particle breakthrough curve \((N_{\text{rel}})\) to the amount retained based on enumeration in the fluorescent microscope. In general, the mass balance was within \pm 15\%, but in most experiments the mass balance was \pm 9\%.

Calculation of Attachment (Collision) Efficiency. In classical colloid filtration theory (CFT), particle removal is represented by first-order kinetics, resulting in concentrations of suspended \(C(x)\) and retained particles \(S(x)\) that decay exponentially with distance

\[
C(x) = C_0 \exp \left[-\frac{k}{\nu}x\right]
\]

\[
S(x) = \frac{t_0\epsilon k}{\rho_b} C(x) = \frac{t_0\epsilon k C_0}{\rho_b} \exp \left[-\frac{k}{\nu}x\right]
\]

where \(k\) is the particle deposition rate coefficient, \(\nu\) is the interstitial particle velocity, \(\epsilon\) is the bed porosity, \(\rho_b\) is the porous medium bulk density, and \(t_0\) is the duration of continuous particle injection at concentration \(C_0\) \((x = 0)\). The particle deposition rate coefficient, \(k\), is related to the commonly used single-collector removal efficiency \(\eta\) as described elsewhere \((30, 31)\).

Particle attachment (collision) efficiencies, \(\alpha\), were calculated for experiments conducted with \(C. \text{parvum} \) oocysts and latex particles at different solution ionic strengths \((38, 43)\). The attachment efficiency is defined as the ratio of the experimental single-collector removal efficiency \(\eta\) and the predicted single-collector contact efficiency \(\eta_0\) evaluated from solution of the convective-diffusion equation \((44)\). The value of \(\eta_0\) for the described experimental conditions was calculated using a new correlation equation based on a rigorous numerical solution of the convective-diffusion equation \(\eta_0 = 2.4 A_S^{1/3} N_R^{-0.081} N_F^{-0.715} N_{\text{vdW}}^{0.052} + 0.55 A_N^{1/4} N_R^{-0.675} N_N^{1.125} + 0.22 A_N^{-0.24} A_S^{0.11} N_{\text{vdW}}^{0.053}\)

\begin{equation}
\eta_0 = 2.4 A_S^{1/3} N_R^{-0.081} N_F^{-0.715} N_{\text{vdW}}^{0.052} + 0.55 A_N^{1/4} N_R^{-0.675} N_N^{1.125} + 0.22 A_N^{-0.24} A_S^{0.11} N_{\text{vdW}}^{0.053}
\end{equation}

where \(N_R\) is an aspect ratio, \(N_F\) is the Peclet number, \(N_A\) is the attraction number, \(N_{\text{eff}}\) is the van der Waals number, and \(N_N\) is the gravity number.

The value of the attachment efficiency can be calculated from the particle breakthrough curve \((\text{BTC})\) using eq 1 and the normalized column effluent concentration \(C(t)/C_{\text{Col,eq}}\) at the initial stages of deposition \((31)\). In addition, linearization of eq 2 reveals that the particle deposition rate coefficient, \(k\), and thus the attachment efficiency, \(\alpha\), can be obtained from the slope \((\Delta S/\Delta t)\) of a semilog plot of the retained particle profile, \(S(x)\) \((31)\).

Results and Discussion

Electrokinetic Properties of Oocysts, Particles, and Collectors. The zeta \((\zeta)\) potentials of \(C. \text{parvum} \) oocysts, polystyrene latex particles, and soda-lime glass beads are characterized at the solution conditions investigated \((\text{pH} 8)\), and their zeta potentials become less negative with increasing ionic strength. It is interesting to note that the zeta potential of the \(C. \text{parvum} \) oocysts is low \((-6 \text{ mV})\) in comparison to that of the latex particles \((-80 < \zeta < -30)\) and remains nearly constant over the range of ionic strengths investigated. This was also reported previously by Dai and Hozalski \((45)\) and Brush et al. \((46)\). The oocysts used here were obtained from the same source as a previous study; however, in the latter case, oocysts were heat-inactivated \((15)\). Under similar solution conditions, Tufekji et al. \((15)\) observed much more negative zeta potentials. Such variation in oocyst \(\zeta\) with changes in oocyst pretreatment methods has previously been reported \((46, 47)\). Measured zeta potentials are used later to calculate Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy profiles for the oocyst-glass bead system and the latex-glass bead system.

Transport and Deposition Kinetics of Oocysts and Latex Microspheres. Oocyst and latex microsphere breakthrough curves obtained at different solution ionic strengths are
electrostatic double-layer forces are lessened resulting in background electrolyte solution increases, the repulsive concentration (C)/C increases (C)/C of C increases (C)/C the normalized effluent oocyst or microsphere concentration of C. parvum oocysts was used in this instance, at 10 mM the value of \(\phi_{\text{oocyst}} \) for the oocysts is 0.26, whereas for the microspheres it is only 0.032. This large discrepancy in measured attachment efficiencies can be partly attributed to the observed differences in oocyst and microsphere zeta potentials (Figure 1). Variations in particle zeta potentials will be reflected in the total interaction energy profiles for the oocyst-glass bead system and the latex-glass bead system.

DLVO Interaction Energy Calculations. To better understand the variation in the observed degree of oocyst and microsphere retention, DLVO theory is used to calculate colloidal interaction energies. DLVO theory considers the sum of London-van der Waals (VDW) attraction and electrostatic double-layer (EDL) repulsion. The total interaction energy, namely, the sum of VDW and EDL interactions, was determined by treating the oocyst-glass bead system and the microsphere-glass bead system as sphere-plate interactions. EDL interactions were calculated from the expression of Hogg et al. (53) for interaction at a constant surface potential, with the zeta potentials of the C. parvum oocysts, latex particles, and soda-lime glass beads being used in place of the respective surface potentials. The VDW attractive energy was calculated from the expression proposed by Gregory (54) for retarded VDW interaction. A value of \(1 \times 10^{-21} \) J was chosen for the Hamaker constant of the polystyrene-water-glass system (24, 25, 52), whereas a value of \(6.5 \times 10^{-21} \) J was used for the oocyst-water-glass system (50).

Key parameters determined from DLVO interaction energy profiles for the oocyst-glass bead system and the microsphere-glass bead system are presented in Table 1 as a function of solution ionic strength. The calculations reveal the presence of a significant repulsive energy barrier to deposition (\(\Phi_{\text{max}} \)) for the latex particles at nearly all ionic strengths, ranging from 7500 kBT at 3 mM to 12 kBT at 100 mM. In contrast, much lower energy barriers to deposition are predicted for the oocyst-glass bead system, ranging from 320 kBT at 1 mM to 1.2 kBT at 30 mM. To some extent, this variation in the energy barrier predicted by DLVO theory can account for the significant differences in measured oocyst and microsphere attachment efficiencies. For instance, at 10 mM, where the value of \(\phi_{\text{oocyst}} \) for the oocysts is 0.26 and that for the microspheres is 0.032, the energy barrier for the oocyst-glass bead system (\(\Phi_{\text{max}} = 130 \text{ kBT} \)) is considerably lower than that for the microsphere-glass bead system (\(\Phi_{\text{max}} = 7000 \text{ kBT} \)).

The results in Table 1 emphasize the variation in deposition rates observed for C. parvum oocysts in comparison to latex microspheres under identical solution conditions. For instance, at 10 mM the value of \(\phi_{\text{oocyst}} \) for the oocysts is 0.26, whereas for the microspheres it is only 0.032. This large discrepancy in measured attachment efficiencies can be partly attributed to the observed differences in oocyst and microsphere zeta potentials (Figure 1). Variations in particle zeta potentials will be reflected in the total interaction energy profiles for the oocyst-glass bead system and the latex-glass bead system.

![Figure 2](image1.png)

FIGURE 2. Representative breakthrough curves for experiments conducted with (a) C. parvum oocysts and (b) 3.0 \(\mu \)m latex particles in columns packed with soda-lime glass beads over a wide range of solution ionic strengths. Key experimental conditions were as follows: approach velocity = \(8.3 \times 10^{-3} \) cm/s, porosity = 0.37, mean bead diameter = 0.328 mm, pH = 8.0–8.3, and temperature = 20–22 °C.

TABLE 1. Experimentally Determined Oocyst and Microsphere Attachment Efficiencies and Calculated DLVO Parameters

<table>
<thead>
<tr>
<th>Ionic Strength (mM)</th>
<th>C. parvum oocyst(^a)</th>
<th>C. parvum microsphere(^a)</th>
<th>C. parvum oocyst (\Phi_{\text{max}}) (kBT)</th>
<th>C. parvum microsphere (\Phi_{\text{max}}) (kBT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.063</td>
<td>0.032</td>
<td>30.0</td>
<td>24.6</td>
</tr>
<tr>
<td>3</td>
<td>0.019</td>
<td>0.032</td>
<td>ND(^d)</td>
<td>ND(^d)</td>
</tr>
<tr>
<td>10</td>
<td>0.026</td>
<td>0.032</td>
<td>ND(^d)</td>
<td>ND(^d)</td>
</tr>
<tr>
<td>30</td>
<td>0.37</td>
<td>0.13</td>
<td>1.2</td>
<td>24</td>
</tr>
<tr>
<td>100</td>
<td>0.55</td>
<td>0.31</td>
<td>NB(^e)</td>
<td>12</td>
</tr>
<tr>
<td>300</td>
<td>0.68</td>
<td>0.86</td>
<td>ND(^d)</td>
<td>72</td>
</tr>
</tbody>
</table>

\(^a\)The value of the single-collector contact efficiency for C. parvum oocysts (\(\eta_{\text{oocyst}} = 1.1 \times 10^{-2} \)) was calculated using eq 3 and the following parameter values: \(d_o = 4.3 \mu \)m, \(d = 328 \mu \)m, \(U = 8.3 \times 10^{-3} \) m/s, \(A = 6.5 \times 10^{-21} \) J, \(T = 293 \text{ K} \), \(\rho_o = 1047 \text{ kg/m}^3 \), \(\rho = 1055 \text{ kg/m}^3 \). \(^b\)Not measured (i.e., column experiment not conducted under given condition). \(^d\)Not determined. \(^e\)No calculated barrier to deposition and, hence, no predicted secondary minimum.

The table presents the attachment efficiencies and calculated DLVO parameters for C. parvum oocysts and latex microspheres across different ionic strengths, with key parameters determined for each system. The table highlights the variation in energy barriers predicted by DLVO theory, with significant discrepancies between the oocyst and microsphere systems, particularly at lower ionic strengths.
transport and deposition (can be a key indicator of the mechanisms controlling particle profile of particles following a typical column experiment in more detail later in the paper).

low ionic strengths considered. This concept will be examined suggest that particles could readily be retained, even at the relatively deep energy wells predicted here for both systems because the EDL interaction decreases exponentially with respect to separation distance, whereas the VDW attraction exhibits a slower power-law decay. DLVO theory predicts an increase in the depth of the secondary energy well with increasing ionic strength, particle size, and Hamaker constant of the interacting media. These calculations indicate that the magnitudes of $\Phi_{p_{\text{cin}}}^\text{c}$ for the oocyst-glass bead system and the microsphere-glass bead system are comparable. For instance, at 10 mM, the value of $\Phi_{p_{\text{cin}}}^\text{c}$ for the oocyst-glass bead interaction is $5.5 \text{k}_\text{B}T$, whereas for the latex-glass bead interaction, it is $3.6 \text{k}_\text{B}T$.

It has been proposed that the observed attachment of colloidal particles in the presence of a relatively high energy barrier (as predicted here for oocysts and microspheres at the lower ionic strengths) can be partially attributed to deposition in the secondary energy well (27, 31, 55, 56). The relatively deep energy wells predicted here for both systems suggest that particles could readily be retained, even at the low ionic strengths considered. This concept will be examined in more detail later in the paper.

Spatial Distributions of Oocysts and Microspheres in Packed Beds. It has been shown that the shape of the retained profile of particles following a typical column experiment can be a key indicator of the mechanisms controlling particle transport and deposition (30, 31). However, as described earlier, well-controlled column studies conducted with C. parvum oocysts, where the spatial distribution of retained oocysts has been quantified over a wide range of physicochemical conditions, are virtually nonexistent. Here, we present spatial distributions of retained C. parvum oocysts or microspheres obtained by carefully dissecting the packed-bed following the completion of each deposition experiment. In Figure 3, the profiles of retained oocysts corresponding to the breakthrough curves in Figure 2a are shown. Similarly, in Figure 4, the profiles of retained latex microspheres corresponding to the breakthrough curves in Figure 2b are shown. In these graphs, the retained particle concentration, $S(x)$, is plotted as a function of distance in a semilog format. Included in each figure for comparison are the spatial distributions of oocysts or latex microspheres predicted by CFT (eq 2) using the attachment efficiency determined from the corresponding breakthrough curve (α_{BTC}).

Inspection of Figures 3 and 4 reveals that the measured concentrations of C. parvum oocysts and microspheres are generally in marked disagreement with those predicted by classical CFT, with the exception of those measured at the higher ionic strengths (100 mM and 300 mM, for the oocysts and microspheres, respectively). This observed behavior is consistent with previously reported findings using model colloidal particles and bacteria (31, 36, 29). It is interesting to note that with increasing ionic strength, the measured spatial distribution of C. parvum oocysts and latex microspheres approaches that calculated using values of α_{BTC} (i.e., that predicted by CFT).

Comparison of Oocyst and Latex Microsphere Attachment Efficiencies. To compare the differing degrees of deviation from CFT obtained with C. parvum oocysts and latex particles, the value of the attachment efficiency, α_{SLOPE}, was calculated from the slope of each profile of retained particles, $S(x)$, and compared with attachment efficiencies calculated from the corresponding breakthrough curves, α_{BTC} (Figure 5). In such a plot, data points falling on the dashed line (slope of 1 and intercept of zero) indicate perfect agreement between values of the attachment efficiency calculated from the oocyst or microsphere breakthrough curve (α_{BTC}) and the attachment efficiency determined from the slope of the corresponding retained profile (α_{SLOPE}).

Inspection of Figure 5 reveals that the behavior of C. parvum oocysts in columns packed with glass beads is nearly identical to that observed with latex microspheres of comparable size. The data points measured from the breakthrough curves and retained profiles obtained with C. parvum oocysts fall in the same region of the plot as the
Thus, both secondary minimum deposition and particle retention on surface charge heterogeneities are expected to contribute to the deviation from CFT observed in the two experimental systems.

Dual Deposition Mode Can Explain Oocyst Deposition Behavior. In the presence of repulsive DLVO interactions, particles may exhibit a dual deposition mode whereby a fraction of the particle population experiences a “fast” deposition rate and the remaining particles deposit at a “slow” rate (29, 31). For instance, the presence of a deep secondary energy minimum as well as charge heterogeneities on particle and/or collector surfaces can provide conditions for favorable or “fast” particle deposition, where the attachment efficiency, \(\alpha \), approaches unity. In contrast, the general occurrence of repulsive energy barriers (unfavorable condition) gives rise to particle deposition rates which are much “slower”, characterized by lower values of the attachment efficiency, i.e., \(\alpha \ll 1 \).

The concurrent existence of both favorable and unfavorable conditions in an otherwise homogeneous system can be described by including a bimodal distribution of \(k \) in the classical colloid filtration theory (30, 31)

\[
C(x) = C_0 \int_0^x \exp \left[-\frac{k}{\eta} \right] p(k) \, dk
\]

\[
S(x) = \frac{\epsilon \eta C_0}{\bar{\eta}} \int_0^x k \exp \left[-\frac{k}{\eta} \right] p(k) \, dk
\]

where \(C(x) \) is the suspended particle concentration, \(S(x) \) is the retained particle concentration, and \(p(k) \) is the linear combination of two normal (Gaussian) distributions:

\[
p(k) = \frac{1}{\sigma_{slow} \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{k - \bar{k}_{slow}}{\sigma_{slow}} \right)^2 \right] + \frac{1}{\sigma_{fast} \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{k - \bar{k}_{fast}}{\sigma_{fast}} \right)^2 \right]
\]

Here, \(\bar{k}_{slow} \) and \(\bar{k}_{fast} \) are the mean deposition rate coefficients, \(\sigma_{slow} \) and \(\sigma_{fast} \) are the corresponding standard deviations, and \(f_{slow} \) and \(f_{fast} \) are the fractions of the total population associated with each mode. This Dual Deposition Mode (DDM) model (eqs 4–6) has successfully been applied to describe the deposition behavior of latex particles in columns packed with glass beads over a broad range of solution conditions (31).

In Figure 6, profiles of retained *C. parvum* oocysts measured at different solution ionic strengths (open symbols) are compared to calculations based on the proposed DDM model (solid lines) as well as classical CFT (dashed lines). Equations 5 and 6 were fit to the measured spatial distribution of oocysts by nonlinear regression using a Levenberg–Marquardt approach. The two parameters varied during the optimization procedure are the mean deposition rate coefficient \(\bar{k}_{slow} \) and the fraction \(f_{slow} \) of the total population associated with this mode. The mean deposition rate coefficient of the rapidly depositing fraction \(\bar{k}_{fast} \) was determined by setting the maximum deposition rate coefficient \(k_{max} \) equal to the transport limited rate (i.e., \(\alpha_{max} = 1 \)), where \(\alpha_{max} = \bar{k}_{fast} + 3\sigma_{fast} (31) \). Because this mode of the distribution takes into account the deposition of oocysts under favorable conditions (i.e., those retained in the secondary energy well or on surface charge heterogeneities), it follows that the maximum value of the attachment efficiency should equal 1. For such conditions, the distribution in the oocyst deposition rate coefficient is considered to be relatively narrow; thus, the standard deviation associated to this mode (\(\sigma_{slow} \)) was calculated as 5% of the mean, \(\bar{k}_{slow} \). When \(k_{max} \) is equal to the transport limited rate and \(\sigma_{fast} = 0.05 \bar{k}_{fast} \), then the mean attachment efficiency \(\alpha_{slow} \) is determined to be 0.87.
deposition), a wider distribution in barrier to deposit in the primary energy well (i.e., "slow")

For the case where oocysts need to overcome an energy

CFT using DDM model with two fitting parameters (solid lines) and the classical

FIGURE 6. Comparison of experimental retained particle concen-

r

a Calculated from \(\alpha_{\text{fast}} = 1 \), where \(\alpha_{\text{fast}} = \alpha_{\text{fast}} + 3.005 \alpha_{\text{slow}} \).

\(h_{\text{fast}} \) determined by nonlinear regression of eq 5 to measured profile of retained oocysts. Note: \(f_{\text{fast}} = 1 - f_{\text{slow}} \). c Predicted by DDM model (eq 4). d Determined by averaging over pore volumes 1.8–2. e Determined by integration of elution peaks in Figure 7a. f Not measured.

tinations, three fitting parameters were required to optimize model predictions. The proposed DDM model is consistent with the observed oocyst deposition behavior, as demonstrated by calculated values of the adjusted coefficient of determination \(R^2_{\text{adj}} \) which are presented in Table 2 (with other parameters to be discussed later).

Values of model parameters (reported as \(\alpha_{\text{slow}} \) and \(f_{\text{fast}} \)) determined for the C. parvum experiments conducted at 1, 10, and 30 mM are shown in Table 2. Observed trends in the values of these parameters with changing solution ionic strength correspond to those noted previously for experiments conducted with similarly sized latex microspheres (31). For instance, inspection of Table 2 reveals that fitted values of \(\alpha_{\text{slow}} \) become larger with increasing ionic strength, from 0.01 at 1 mM to 0.17 at 30 mM. This behavior can be attributed to an increase in the efficiency of oocysts in overcoming the repulsive energy barrier as the height of this barrier diminishes with increasing ionic strength. The fraction of the oocyst population that experiences a "fast" deposition rate, \(f_{\text{fast}} \), also increases with solution salt concentration. As solution ionic strength increases, the extent of favorable deposition conditions becomes more significant (i.e., there is a higher probability of oocysts encountering a deep secondary energy well and/or a near-neutrally charged surface heterogeneity).

Also included in Table 2 are predicted and measured values of the normalized column effluent concentration, \(C/C_{0} \), as a function of solution ionic strength. Predictions of \(C/C_{0} \) were obtained using eqs 4 and 6 with the optimized and calculated model parameters. Results predicted by the DDM model are in good agreement with measurements of \(C/C_{0} \) over the range of ionic strengths investigated.

Supporting Evidence for Dual Mode Deposition of Cryptosporidium Oocysts. Experimental validation of model fitting parameters is a considerable challenge in applying transport models to describe observed particle deposition behavior. As mentioned earlier, the DDM model has been successfully applied to describe the deposition behavior of latex microspheres over a wide range of solution ionic strengths (31). In this study, optimized DDM model parameters were verified experimentally using elution experiments, where the fraction of particles eluted following injection of low ionic strength and high pH solutions was quantified (31). It has been proposed that the elution of deposited particles following exposure to a low ionic strength solution can be attributed to release from the secondary energy minimum (20, 21, 27, 55, 56, 58). Likewise, an injection of a high pH solution should promote release of particles retained on surface charge heterogeneities such as metal oxide impurities (59). Thus, an elution experiment, where retained particles are exposed to a series of particle-free electrolyte solutions, should provide insight into the mechanisms controlling particle deposition.

In the elution experiments carried out in this study, two additional pulses of particle-free solutions were pumped through the column following a typical particle injection: (i) a pulse of much lower ionic strength (0.1 mM KHCO₃) to
eliminate the presence of the secondary minimum and (ii) a solution at pH 11 (1 mM KOH) to promote release of particles deposited on surface charge heterogeneities. Breakthrough curves for elution experiments conducted with *C. parvum* oocysts (at 30 mM) and similarly sized latex microspheres (at 100 mM) are shown in parts a and b, respectively, of Figure 7. These two experiments were selected for comparison because they exhibit comparable degrees of particle removal (i.e., the value of \(\theta_{BTC} \) for *C. parvum* oocysts at 30 mM is 0.38, whereas for latex colloids at 100 mM, \(\theta_{BTC} = 0.33 \)). The fraction of released oocysts, \(f_{rel} \), was calculated by numerically integrating the two elution pulses in Figure 7a (\(N_{cel} \)) and dividing by the total number of oocysts deposited during the first phase of the experiment (\(N_{dep} \) (Table 2, rightmost column). In a similar investigation conducted with uniform latex particles, Tufenkji and Elimelech (31) showed that the fraction of particles released following injection of low ionic strength and high pH solutions was in excellent agreement with values of the fitted DDM model parameter, \(f_{last} \). For instance, when particles were deposited at 100 mM ionic strength (Figure 7b), the measured fraction of particles released, \(f_{last} \), was 0.62 whereas the fitted DDM model parameter, \(f_{last} \), was 0.61. However, in the experiment conducted here with *C. parvum* oocysts (Figure 7a), the measured value of \(f_{rel} \) is not very close to the optimized DDM model parameter value (i.e., \(f_{rel} = 0.23 \) whereas \(f_{last} = 0.57 \)). If secondary minimum deposition and retention on surface charge heterogeneities were the key mechanisms controlling oocyst deposition (as suggested by the experiments conducted with model particles (31)), then the fraction of oocysts eluted should correspond to the fraction of oocysts that deposit at a “fast” rate. Yet, the measured value of \(f_{rel} \) is nearly one-third that of the fitted model parameter, \(f_{last} \).

This discrepancy in values of \(f_{rel} \) and \(f_{last} \) for the *C. parvum* elution experiment may be attributed to specific chemical interactions between oocyst wall macromolecules and the glass-bead collector. Using AFM studies, Considine et al. (60, 61) examined the interaction between *C. parvum* oocysts and silica surfaces similar to those used here. Their results were in qualitative agreement with measurements made in AFM studies using different tip–sample systems where the observed behavior was attributed to molecular bridging by macromolecules (62–65). Considine et al. (60, 61) propose that once the silica and oocyst surfaces contact each other, protein-linked tethering could occur. In fact, these authors suggest that protein molecules could readily bridge oocyst and glass surfaces several tens of nanometers out from hard-wall contact (e.g., where the oocyst is held in a secondary energy well) (61). Such specific interfacial protein interactions between the oocyst wall and glass-bead collectors could explain the reduced degree of particle release observed in the *C. parvum* elution experiment.

It is also interesting to note the different shapes of the elution peaks in Figures 7a and b. In the experiment conducted with latex particles (Figure 7b), the first elution peak (obtained after injection of 1 mM KHCO₃) is tall and narrow, whereas the second peak (obtained after injection of 1 mM KOH) is relatively insignificant. In comparison, with *C. parvum* oocysts, the two elution peaks have a short, broad shape and are more evenly distributed (Figure 7a). This difference in microsphere and oocyst release behavior could be related to the governing attachment mechanisms in each system. Elimination of the secondary energy well (following a sharp decrease in solution ionic strength) results in rapid release of retained microspheres (Figure 7b). On the other hand, a similar change in solution conditions in an experiment conducted with *C. parvum* results in slow and incomplete release of oocysts (as noted earlier). This slower elution of oocysts in comparison to latex microspheres may be related to the proposed specific surface interactions between oocyst wall proteins and the glass-bead collector. Such protein-tethering could retard or even completely inhibit oocyst release.

Implications for Oocyst Transport in Subsurface Porous Media. Measurements of retained *Cryptosporidium parvum* oocyst concentration were found to be in considerable disagreement with predictions of oocyst transport based on classical colloid filtration theory. These results have important implications with respect to predictions of oocyst removal in natural and engineered aquatic systems. In Figure 8, calculations of oocyst transport potential based on CFT (using the measured values of \(\theta_{BTC} \) in Table 1) are compared to calculations based on the DDM model (using the fitted parameter values in Table 2). The degree of oocyst removal is plotted as a function of travel distance for two cases: 1 mM and 10 mM ionic strength, in parts a and b, respectively, of Figure 8. The results shown in Figure 8 demonstrate how CFT significantly overestimates (by several orders of magnitude) predictions of oocyst removal in comparison to the DDM model. At the lowest ionic strength considered (Figure 8a), CFT predicts 5 log removal (i.e., \(C/C_0 = 0.00001 \)) at a travel distance of 6 m, whereas calculations based on the DDM model suggest less than one log removal (i.e., \(C/C_0 \approx 0.1 \)). This comparison reveals the potential risk when predictions of oocyst transport are assessed using CFT. In its Long-Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR), the U.S. EPA grants up to 1 log additional removal credit for *C. parvum* to water utilities using bank filtration wells located at least 15 m from the source (13). This design criterion is clearly in better accord with the DDM model than predictions based on CFT (Figure 8a). In fact, the calculations shown in Figure 8 suggest that the LT2ESWTR log credits are conservative relative to the DDM model. The better agreement observed between experimental results and the DDM model (Figure 6) and the comparison shown in
such as iron oxide coatings and the stabilizing effect of NOM. Mechanisms implicitly, the consideration of simultaneous deposition rate, it is clearly ill-posed to describe such a CFT is based on the assumption of a single, constant microbe of natural organic matter (NOM) may enhance oocyst influence the degree of microbe removal. For instance, the occurrence of iron oxide coatings on subsurface solid matrix may increase oocyst deposition (18, 59), whereas the presence of natural organic matter (NOM) may enhance oocyst transport (59, 66). Physical screening of oocysts is also expected to play an important role in such settings (15, 67, 68). Because CFT is based on the assumption of a single, constant microbe deposition rate, it is clearly ill-posed to describe such a problem. While the DDM model may not account for these mechanisms implicitly, the consideration of simultaneous “fast” and “slow” deposition allows for inclusion of factors such as iron oxide coatings and the stabilizing effect of NOM.

Acknowledgments

The authors acknowledge the support of the U.S. Environmental Protection Agency (Award CR-82901001-0), the U.S. Department of Agriculture (Award 2002-35102-12600), and the Natural Sciences and Engineering Research Council of Canada (NSERC) for a graduate student fellowship to N.T. The authors also thank W. P. Johnson for sharing the packed bed extrusion technique.

Literature Cited

Received for review November 1, 2004. Revised manuscript received March 14, 2005. Accepted March 15, 2005.

ES048289Y

VOL. 39, NO. 10, 2005 / ENVIRONMENTAL SCIENCE & TECHNOLOGY • 3629