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Abstract

Assessing the public health benefits from air pollution control measures is assisted by understanding the relationship

between mobile source emissions and subsequent fine particulate matter (PM2.5) exposure. Since this relationship varies by

location, we characterized its magnitude and geographic distribution using the intake fraction (iF) concept. We considered

emissions of primary PM2.5 as well as particle precursors SO2 and NOx from each of 3080 counties in the US. We modeled

the relationship between these emissions and total US population exposure to PM2.5, making use of a source–receptor

matrix developed for health risk assessment. For primary PM2.5, we found a median iF of 1.2 per million, with a range of

0.12–25. Half of the total exposure was reached by a median distance of 150 km from the county where mobile source

emissions originated, though this spatial extent varied across counties from within the county borders to 1800 km away.

For secondary ammonium sulfate from SO2 emissions, the median iF was 0.41 per million (range: 0.050–10), versus 0.068

per million for secondary ammonium nitrate from NOx emissions (range: 0.00092–1.3). The median distance to half of the

total exposure was greater for secondary PM2.5 (450 km for sulfate, 390 km for nitrate). Regression analyses using

exhaustive population predictors explained much of the variation in primary PM2.5 iF (R2
¼ 0.83) as well as secondary

sulfate and nitrate iF (R2
¼ 0.74 and 0.60), with greater near-source contribution for primary than for secondary PM2.5.

We conclude that long-range dispersion models with coarse geographic resolution are appropriate for risk assessments of

secondary PM2.5 or primary PM2.5 emitted from mobile sources in rural areas, but that more resolved dispersion models

are warranted for primary PM2.5 in urban areas due to the substantial contribution of near-source populations.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Inhaling fine particulate matter (PM2.5) can lead
to several adverse health impacts ranging from
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reduced lung function to premature mortality
(Gauderman et al., 2004; Pope, 2000; Brunekreef
and Holgate, 2002; US Environmental Protection
Agency, 2004). In recent cost–benefit analyses of the
Clean Air Act, the disease burden attributable to
PM2.5 exposure dominated health benefits resulting
from pollution control in the US (US Environ-
mental Protection Agency, 1999b). Mobile sources
such as cars, trucks, trains, ships, and airplanes
.
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contribute to PM2.5 pollution by direct emissions
(primary PM2.5) as well as emissions of precursor
pollutants like sulfur dioxide, nitrogen oxides, and
hydrocarbons which undergo chemical transforma-
tions to form secondary PM2.5. In the US,
approximately 30% of primary PM2.5 emissions
and 60% of NOx emissions can be attributed to
mobile sources (US Environmental Protection
Agency, 1999c).

Decision-making agencies often follow a risk
assessment framework to compare costs and bene-
fits of air pollution control strategies. In this
context, risk assessment typically involves identifi-
cation of the hazardous pollutants, characterization
of emissions that might influence exposure to these
substances, application of atmospheric dispersion
models to determine the concentration impacts of
these emissions, estimation of health risks asso-
ciated with concentration changes, and risk char-
acterization. Thus, it is important to understand the
relationship between emissions and exposures
across the population in a format that is relevant
for risk calculations. This relationship depends on
where people live, where emission sources are
located, which pollutants are emitted, meteorology,
atmospheric chemistry, and myriad other condi-
tions. Atmospheric dispersion models in this context
must be applied over a spatial domain large enough
to capture most population exposure, but with
sufficient resolution to capture spatial gradients
and key atmospheric phenomena. A measure that
summarizes the emissions-to-exposure relation-
ship can provide significant insight about the
importance of the above factors, the necessary
model scope and resolution, and the settings in
which emission controls would yield greater or
lesser health benefits.

The emissions-to-exposure relationship can be
characterized by the intake fraction concept, abbre-
viated iF, simply defined as the fraction of a
pollutant (or its precursor) emitted from a source
that is inhaled by a specified population during a
given time (Bennett et al., 2002). The concept has
been in the scientific literature for decades, although
with an array of different names, including exposure
efficiency (Harrison et al., 1986; Evans et al., 2000,
2002), exposure factor (Smith, 1988), exposure
effectiveness (Smith, 1993), inhalation transfer
factor (Lai et al., 2000), exposure constant (Guinee
and Heijungs, 1993), potential intake (Hertwich
et al., 2001), and fate factor (Jolliet and Crettaz,
1997). The impetus behind iF is to find straightfor-
ward ways to organize scientific information in a
manner that informs risk-based environmental
policy, and to allow findings from exposure studies
to be extrapolated to other settings.

Other studies have investigated intake fractions
from mobile sources, but none have provided the
necessary information to understand spatial hetero-
geneity or to determine the appropriate scope and
resolution for a dispersion model in a risk assess-
ment context. A Southern California Air Basin
(SoCAB) study combined ambient monitoring data
with time-activity patterns to develop local iFs for
carbon monoxide and benzene emitted from mobile
sources (Marshall et al., 2003). While this study
provides useful information for the SoCAB, the
appropriate iF values in other settings may differ,
and the use of monitoring data in one air basin
rather than dispersion modeling makes it difficult to
determine whether significant exposures occurred
outside of the basin. Building on this work,
researchers used three methods to estimate iFs for
nonreactive vehicle emissions in US urban areas,
including a one-compartment steady-state mass-
balance model and applied US EPA’s National-
scale Air Toxics Assessment (NATA) for diesel
particulate matter (Marshall et al., 2005). Though
the three methods provided consistent results, the
use of a box model does not capture within or
between region iF heterogeneity or more complex
meteorology, and the other approaches do not
address potential impacts outside of the source
region.

Two studies in the literature did evaluate spatial
patterns in mobile source iFs. The first, (Nigge,
2001), estimated primary PM2.5 iFs in Germany by
combining a Gaussian plume model (GPM) and
population densities close to the source and a wind
trajectory model (WTM) at greater distances. Better
near-source model resolution was found to improve
iF estimates for densely populated areas and low
emission heights, as would occur in traffic congested
urban areas. However, this study was limited by the
assumption that the contribution to iF from
distances greater than 100 km from the source was
constant regardless of population density patterns,
which may not be appropriate. The second study
used CALPUFF, a dispersion model based on
Gaussian dispersion theory that models continuous
emissions as a series of discrete puffs, to estimate
primary and, for the first time, secondary PM2.5 iFs
for 40 highway stretches (Evans et al., 2002). This
study provided some insight into the appropriate
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dispersion model scale and heterogeneity of mobile
source iFs, however the receptor resolution
(100 km� 100 km) and limited number of geo-
graphic areas did not allow for nationally general-
izable results.

In our analysis, we build on the existing literature
by estimating both primary and secondary PM2.5

mobile source iFs for all counties in the contiguous
US. These iFs reflect the national, rather than local,
public health impacts attributable to mobile source
emissions from each county, since emissions from
one county can influence ambient concentrations in
downwind counties. We applied a source–receptor
model developed for air pollution risk assessment to
examine the national average and distribution of iF
at county-level resolution, which can inform the
development and application of more detailed
atmospheric dispersion models. Furthermore, we
develop regression models to help explain the
significant influences on mobile source iFs. These
results should provide guidance for future health
impact assessment studies with recommendations
about the model scope and resolution appropriate
for different pollutants in different settings.
2. Methods

We use a dispersion model which covers the 48
contiguous US states and treats all mobile source
emissions in each of 3080 US counties (the largest
administrative division of most states) as area
sources. It is important to note that mobile source
emissions impact the county where the emissions
originated (termed the source county, j) in addition
to downwind counties, and that the national iF
incorporates exposure in all counties.
2.1. The intake fraction

A mobile source intake fraction is calculated for
each of 3080 counties for primary and secondary
Table 1

Intake fraction notation

PM2.5 type Exposure p

iF(p) Primary PM2.5

iF(as,SO2) Secondary Ammonium

iF(an,SO2) Secondary Ammonium

iF(an,NOx) Secondary Ammonium
PM2.5. The national intake fraction corresponding
to the county where the emissions originated, iFj, is
the total population PM2.5 exposure divided by the
emissions (precursor emissions in the case of
secondary PM2.5) from the source county. It is
calculated according to

iFj ¼ SiðPi DCijÞ � BR=Qj, (1)

where Pi is the population in impacted county i, DCij

(in mgm�3) is the change in ambient PM2.5

concentration in impacted county i. This change is
due to mobile source emissions of PM2.5 or particle
precursors, Qj (in mg d�1), originating from source
county j, and BR is the nominal population
breathing rate of 20m3 d�1. Eq. (1) is evaluated
for all 3080 counties, j, and i ranges from 1 to 3080
for each j. County-level population projections for
year 2007, estimated from 1990 Census data, were
used (Abt Associates et al., 2000), although we
tested the sensitivity of our findings to 2000 Census
data (US Census Bureau, 2000). The values of DCij

were estimated by use of a source–receptor (S–R)
matrix, described in Section 2.2. Mobile source
PM2.5 and precursor emissions from each county
were based upon EPA National Emissions Inven-
tory information (Abt Associates, 2004; US Envir-
onmental Protection Agency, 1999a).

Since they are pollutant specific, four mobile
source intake fractions were estimated. For primary
PM2.5, the iF represents the fraction of PM2.5

emitted that is inhaled by the population and will
be denoted as iF(p). Secondary PM2.5 iFs represent
the ratio of the mass of secondarily generated
ammonium sulfate or nitrate inhaled by the
population to the mass of the emitted SO2 or
NOx. Refer to Table 1 for a description of the
notation for iF(p) and the three secondary intake
fractions, iF(as, SO2), iF(an,NOx), and iF(an,SO2).
This last iF is negative indicating that reductions in
SO2 emissions can result in increased NH4NO3

exposures in some settings (Levy et al., 2003; West
et al., 1999).
ollutant Emitted pollutant

PM2.5

sulfate ((NH4)2SO4) Sulfur dioxide (SO2)

nitrate (NH4NO3) Sulfur dioxide (SO2)

nitrate (NH4NO3) Oxides of nitrogen (NOx)
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2.2. The S– R matrix

The S–R matrix is a regression-based derivation
of output from the Climatological Regional Dis-
persion Model (CRDM) which uses assumptions
similar to the Industrial Source Complex Short
Term model (ISCST3). It was developed by Pechan
and Associates for Abt Associates and used in past
regulatory impact analyses (US Environmental
Protection Agency, 1999d). S–R matrix provides a
database of transfer factors that summarize the
impact that mobile source PM2.5 and precursor
emissions from any one county have on ambient
PM2.5 concentrations in that county as well as all
other counties (Abt Associates, 2003). The under-
lying model, CRDM, incorporates terms for wet
and dry deposition of primary and secondary
species that constitute PM2.5 and uses meteorologi-
cal summaries (annual average mixing heights and
joint frequency distributions of wind speed and
direction) from 100 upper air meteorological sites
throughout North America. Additionally, CRDM
uses Turner’s sector-average approach, a probabil-
istic method where relative frequencies of occur-
rence of combinations of wind and stability
conditions at the emissions source are used to
calculate the relative frequencies of transport in
various sectors (Abt Associates, 2004).

The mass flux of directly emitted PM2.5 is a
function of the material initially emitted and the
amount deposited by wet and dry processes during
the period of transport from the emission point to
the receptor. The mass flux of secondary pollutants,
(NH4)2SO4 and NH4NO3, is dependent upon the
fraction of the emitted species, SO2 and NOx, that is
chemically converted in the atmosphere to the
secondary species and the amount of the secondary
species that is deposited by wet and dry deposition
processes. S–R matrix includes ambient concentra-
tions of ammonia, sulfate, and nitrate by county.
The incremental PM2.5 concentration changes,
given SO2 and NOx emission changes, are dictated
by some simplifying assumptions. Generally, all
sulfate present is assumed to be converted to
ammonium sulfate while ammonium nitrate forma-
tion is limited by the relative concentrations of
nitrate and ammonium remaining after the sulfate
neutralization process. Particulate ammonium ni-
trate is assumed to form only a quarter of the year,
given the temperature dependence of the conversion
from nitric acid to particulate ammonium nitrate
(Abt Associates, 2004).
A set of county-specific calibration factors for
PM2.5 was used to calibrate the S–R matrix model
to ambient air quality data. The calibration factors
are estimated using the 2001 National Emissions
Inventory (NEI) and data from the Federal
Reference Method (FRM) and EPA’s Speciation
Network (ESPN) monitor sites for 2002. Prior to
calibration, PM2.5 concentrations at county cen-
troids were estimated using the S–R matrix as
applied to a comprehensive emissions inventory.
Then, monitored data from FRM and ESPN sites
were spatially interpolated to county centroids using
inverse distance weighting to estimate the same
baseline PM2.5 levels. The calibration factors are
based on the ratio of the monitor to modeled PM2.5

estimates and range from 0.11 to 3.5, with a median
value of 0.90. All iFs presented in this paper reflect
calibrated estimates, although we performed a
sensitivity analysis of the impact of the calibration
factors on iF.

2.3. Analysis

One of the primary aims of this study is to
understand the spatial extent of mobile source
intake fractions. That is, we wish to characterize
at what distance from the source county the bulk of
the national intake fraction is captured, as this will
inform conclusions about appropriate dispersion
model scope. iFj by definition is a national-scale
sum of exposure across receptor counties (Eq. (1)),
but we can consider the fraction of iFj occurring
within various radial distances of the source county.
The minimum fraction will occur within the source
county itself, as this excludes populations at all
other distances. We define fTEj to be the fraction of
total exposure occurring within the source county
borders, as presented in Eq. (2). For simplicity’s
sake, we consider this to represent a radial distance
of 0 km.

fTEj ¼ DCjjPj=Si Pi DCij

� �
. (2)

In counties where fTEj is high, eliminating mobile
source emissions in the county would primarily
influence public health at a local level. (Counties
might have high fTEj if they are highly urbanized, or
if they are surrounded by areas that contain few or
no people.) On the other hand, for counties where
fTEj is low, the benefit of eliminating mobile source
emissions in the county would primarily occur in
other counties. If source county concentration
estimates are off by a factor of 2, this would lead
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to a greater impact in counties with high fTEj. It
would be increasingly important to do more
resolved modeling in these areas to adequately
capture spatial concentration gradients that might
occur within counties. Additionally, we compute the
distances for which the fraction of total exposure is
10%, 50%, or 90%, thereby characterizing the
spatial extent of the iFs.

To explain heterogeneity in iFj, we develop simple
and multiple linear regression models using popula-
tion predictors. Simple linear regression models
examined the predictive power of the source-county
population, Pj, and included an intercept term to
account for the intake fraction that would occur
outside of the source county. After a preliminary
analysis of the spatial extent of iFj, five population
predictors were tested in multiple linear regression
models (MLR). They were the population within
50 km (Pj,o50), between 50 and 100 km (Pj,50–100),
between 100 and 200 km (Pj,100–200), between 200
and 500 km (Pj,200–500), and outside of 500 km of the
source county (Pj,4500). Since the MLR models
incorporated exhaustive US population predictors,
the intercept was constrained to zero, resulting in an
iF of zero if there were no people in any of the
population bins.
Fig. 1. Central tendencies and distributions of primary and secondary P

distribution, the box represents the middle half of the data, called the

represent the 25th, 50th (median), and 75th percentiles, while the dott

boxes include iFs within 150% of the IQR from the lower and upper qua

percentiles of the distribution. Note that the intake fractions are displa
In addition to population, windspeed, tempera-
ture, precipitation, mixing height and other factors
can influence the fate and transport of contami-
nants. While these factors are clearly significant,
they are difficult to include in an interpretable way
in iF regression models, since meteorology at the
source county may not be representative of down-
wind meteorology. Given that climate and county
size are distributed differently in Eastern versus
Western states, a simple dummy variable was
tested to determine if it added to the explanatory
power of the exhaustive population predictor
model. For the purposes of this analysis, the
following 11 states were considered Western states:
Arizona, California, Colorado, Idaho, Montana,
Nevada, New Mexico, Oregon, Utah, Washington,
and Wyoming.

3. Results

3.1. Descriptive statistics

Primary PM2.5 mobile source intake fractions for
3080 US counties varied from 0.12 to 25 per million,
with a median of 1.2 and a mean of 1.6 per million
(Fig. 1). Alternatively stated, on average 1.6 g of
M2.5 mobile source intake fractions for US counties. For each iF

interquartile range (IQR). On each box, the solid vertical lines

ed line represents the mean. The ‘‘whiskers’’ extending from the

rtiles and the dots outside the whiskers represent the 5th and 95th

yed on a log-scale and that the iF(an,SO2) values are negative.
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PM2.5 is inhaled by the population for every metric
ton emitted by mobile sources generated in a
county. The emissions-weighted iF(p), which reflects
Fig. 2. Maps of national-scale mobile source intake fractions for US co

by 20-percentile iF bin and the circles indicate the top 1-percentile co

(c) secondary PM2.5 iF(an,NOx); (d) secondary PM2.5 iF(an,SO2).
the average exposure per ton of PM2.5 emitted
across the US, is 2.5 per million. The increased
magnitude reflects the correlation between mobile
unties. The iFs are plotted in units of per million. Shading occurs

unties: (a) primary PM2.5 iF(p); (b) secondary PM2.5 iF(as,SO2);
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Fig. 2. (Continued)
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source emissions and population density. The high-
est iF(p) values tend to occur in densely populated
counties whose emissions impact densely populated
downwind regions (Fig. 2a). The fraction of total
exposure that occurs within the source county
borders, fTEj, ranges considerably from 0.1% to
92%, with median and mean estimates of 11% and
16%, respectively.
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The central tendencies of the secondary PM2.5 iFs
are 1–2 orders of magnitude smaller than iF(p)
(Fig. 1). The median value for iF(as,SO2) is 0.41 per
million (range: 0.050–10), which is approximately a
factor of 6 greater than the median for iF(an,NOx)
of 0.068 per million (range: 0.00092–1.3). The
median iF(an,SO2) value is �0.033 per million, with
the negative sign indicating that reductions in SO2

emissions can increase ammonium nitrate exposure.
The emissions-weighted iF(as,SO2) is 0.66, iF(an,
NOx) is 0.12, and iF(an,SO2) is �0.088 per million.
Secondary iFs exhibit as much or more variation in
magnitude, but less small-scale geographic variation
than the primary iFs (Figs. 2b–d).

By comparing iF(an,SO2) to iF(as,SO2), we can
get a sense of the amount of sulfate exposure
reduction offset by nitrate formation. In this way we
determined the public health benefits of SO2

emission controls might be reduced an average of
9% (range: 1–29%) for US counties when the
increased nitrate concentrations are incorporated.

3.2. Spatial extent

To determine the spatial extent of the intake
fraction, we examined how the cumulative fraction
of total exposure increased with distance from the
source county from fTEj to 100%. All 3080
distributions for iF(p), iF(as,SO2), and iF(an,NOx)
Fig. 3. Spatial extent of mobile source intake fractions. The distances

shown. The boxes indicate the middle half of each distribution, while t

values.
are summarized in Fig. 3. These box plots depict the
distance from the source county where 10%, 50%,
and 90% of the total exposure for each pollutant is
reached. For iF(p), half of the total primary PM2.5

exposure is reached at a median distance of 150 km
from the source county, though for 5% of counties,
it is met within the county borders while for another
5% of counties it is not met until more than
1000 km from the county where the emissions
originated. The median distances where half of the
total secondary PM2.5 exposure is met for iF(as,
SO2), iF(an,NOx), and iF(an,SO2) are 450, 390, and
740 km, respectively, signifying that the spatial
extent of the secondary iFs is greater than for the
primary iFs.

3.3. Regression modeling

Given the significant contribution of source-
county populations to iF in many settings, we
initially investigated the extent to which the source-
county population, Pj, could explain the variation in
iFs (Table 2). For the iF(p) model, the intercept, b0,
of 1.27 per million can be interpreted as the average
magnitude of the intake fraction occurring out-
side of the source county, while the slope times
the source-county population, b1 Pj, represents the
magnitude of the national iFj occurring inside the
source county. In simple linear regression models, Pj
where 10%, 50%, and 90% of the total exposure is reached are

he dots outside the whiskers represent the 5th and 95th percentile
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Table 2

Mobile source intake fraction simple linear regression models for iFj ¼ b0+b1Pj

Dependent variable R2 Independent variables Parameter estimate Std. error t-value

iFj(p) 0.43 b0 (Intercept) 1.27� 10�6 2.31� 10�8 55��

b1 Source-county population 3.42� 10�12 7.10� 10�14 48��

iFj(as,SO2) 0.49 b0 (Intercept) 3.64� 10�7 4.75� 10�9 76��

b1 Source-county population 7.34� 10�13 1.46� 10�14 51��

iFj(an,NOx) 0.07 b0 (Intercept) 7.73� 10�8 1.33� 10�9 58��

b1 Source-county population 5.29� 10�14 4.07� 10�15 13��

iFj(an,SO2) 0.46 b0 (Intercept) �3.17� 10�8 9.89� 10�10 �32��

b1 Source-county population �1.56� 10�13 3.03� 10�15 �52��

��po0.0001.

Table 3

Exhaustive population predictor multiple linear regression models for iFj ¼ b1Pj,o50+b2Pj,50–100+b3Pj,100–200+b4Pj,200–500+b5Pj,4500

Dependent variable Adjusted R2 Independent variablesa Parameter estimate Std. error t-value

iFj(p) 0.83 b1 Pj,o50 1.07� 10�12 1.94� 10�14 55��

b2 Pj,50–100 1.60� 10�13 1.42� 10�14 11��

b3 Pj,100–200 2.73� 10�14 6.12� 10�15 4.4��

b4 Pj,200–500 1.16� 10�14 1.32� 10�15 8.8��

b5 Pj,4500 2.12� 10�15 1.12� 10�16 19��

iFj(as,SO2) 0.74 b1 Pj,o50 1.31� 10�13 5.76� 10�15 23��

b2 Pj,50–100 3.11� 10�14 4.12� 10�15 7.4��

b3 Pj,100–200 6.92� 10�15 1.81� 10�15 3.8��

b4 Pj,200–500 4.04� 10�15 3.91� 10�16 10.3��

b5 Pj,4500 8.35� 10�16 3.32� 10�17 25.1��

iFj(an,NOx) 0.60 b1 Pj,o50 1.56� 10�14 1.43� 10�15 11��

b2 Pj,50–100 4.89� 10�15 1.04� 10�15 4.7��

b3 Pj,100–200 6.44� 10�16 4.50� 10�16 1.4

b4 Pj,200–500 �1.69� 10�16 9.70� 10�17 �1.7�

b5 Pj,4500 2.75� 10�16 8.25� 10�18 33��

iFj(an,SO2) 0.44 b1 Pj,o50 �2.15� 10�14 1.31� 10�15 �16��

b2 Pj,50–100 �3.84� 10�15 9.55� 10�16 �4.0��

b3 Pj,100–200 �1.45� 10�15 4.12� 10�16 �3.5�

b4 Pj,200–500 �6.84� 10�16 8.91� 10�17 �7.7��

b5 Pj,4500 �4.09� 10�17 7.57� 10�18 �5.4��

aAll population terms are calculated by summing country populations that fall within the specified distance in km between country

centroids.
�po0.005.
��po0.0001.
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explained over 43% of the variability in iF(p),
iF(as,SO2), and iF(an,SO2), but only 7% for
iF(an,NOx).

We next considered exhaustive population pre-
dictor (Pj,o50, Pj,50�100, Pj,100–200, Pj,200–500, and
Pj,4500) multiple linear regression models for iF(p),
iF(as,SO2), iF(an,NOx), and iF(an,SO2) (Table 3).
Except for the Pj,100–200 term for iF(an,NOx), all
population predictor estimates are significant at the
0.05 level. The iF(p) model tells us that for each
additional person located within 50 km of the source
county, iF(p) would increase by 1.07 per trillion if
all other population terms were to remain un-
changed. The partial slope terms decrease in
magnitude with distance from the county where
mobile source emissions originate, so, for iF(p), a
person located within 50 km of the source county
would experience about 7 times the exposure of a
person located between 50 and 100 km away. The
population based MLR models explained between
44% and 83% of the variability in all iFs as
indicated by the R2 values.
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A dummy indicator was added to the MLR
model to help account for the differences in climate,
county size, and population density that might be
expected in eastern versus western US counties.
Interaction terms including the West dummy
indicator for iF(p) were significant for Po50 and
P50�100 and the adjusted R2 for this model was 0.89.
Adding this indicator to the secondary iF MLR
models increased the adjusted R2 by 0.02, 0.11, and
0.22 for iF(an,NOx), iF(as,SO2), and iF(an,SO2),
respectively, but did not fully capture regional
patterns associated with secondary PM2.5 chemistry.

We undertook limited sensitivity analyses, focus-
ing on the population estimates and calibration
factors. We present results that use 2007 county-
level population projections based on 1990 Census
data; recalculating all iFs using 2000 Census data
did not significantly change the descriptive statistics,
spatial extent, or regression models. For example,
the median iF(p) was the same to 2 significant
figures. Furthermore, the results presented in this
study make use of calibration factors in S–R matrix
that calibrate model output with ambient monitor-
ing data. Although the median value for iF(p)
shifted upwards by 17% when the calibration
factors were removed, the core results remained
the same.

4. Discussion

Our use of S–R matrix allowed us to explore the
magnitude, geographic distribution, and spatial
extent of primary and secondary PM2.5 mobile
source intake fractions across the US There is
considerable heterogeneity in these iFs, with values
spanning several orders of magnitude across US
counties. However, much of this heterogeneity can
be explained using population predictors, particu-
larly those close to the source county.

One of the objectives of this paper was to examine
the spatial extent of mobile source intake fractions,
to inform future modeling efforts. We found that
half of the total exposure for primary PM2.5 from
mobile sources occurs by a median distance of
150 km from the source county, and at least twice as
far away for secondary PM2.5. These distances are
in marked contrast to other studies that found a
drop-off in ultrafine particle counts within approxi-
mately 100m of a Los Angeles freeway (Zhu et al.,
2002) and associations with traffic related air
pollution at schools located within 400m of motor-
ways in the Netherlands (Janssen et al., 2001). While
these findings appear to contradict our results, our
focus is on total population exposure, which would
be expected to exhibit a greater spatial extent than
individual exposure. In other words, even if
concentrations were an order of magnitude lower
beyond 400m, if 100 times more people lived
beyond 400m, then iF would not be dominated by
local exposures. The geographic resolution of S–R
matrix, at county-level, also limited our ability to
fully examine the spatial extent of the iF. Another
study using a national-level model with
100 km� 100 km resolution found half of the total
exposure to be between 100 and 350 km (Evans et
al., 2002), but others have not explored this question
with more spatially resolved models.

To help interpret our findings, it is useful to
compare our results to other mobile source iF
studies in the literature. For estimates in the US, we
can directly compare our results to the counties
modeled in previous studies, and we can approxi-
mately compare our results with non-US studies by
matching on population densities. The results of
these comparisons are summarized in Table 4.
Despite using different dispersion models, our
national iF(p) are comparable to those reported by
Evans et al. (2002), while our iF(as,SO2) and
iF(an,NOx) values are 4–14 times higher. This is
consistent with another study’s power plant iF
comparison to Evans et al. (2002), which also used
CALPUFF and found that after controlling for
population, the primary PM iF estimates were
similar, but the secondary iF estimates remained
greater (Zhou et al., 2003). This may indicate
underestimation of secondary iFs by Evans et al.
(2002). For all iF types, we found greater urban-
rural differences than did Evans et al., potentially
related to their relatively coarse geographic resolu-
tion and small number of modeled locations. Our
iF(p) estimates are approximately a factor of 3–6
lower than those by Marshall et al. (2003, 2005),
likely due in part to their consideration of time-
activity patterns and smaller-scale geographic re-
solution, as well as their modeling of non-reactive
gases rather than particulate matter. Similar iF(p)
results to Marshall, 2003 were reported in a study in
Finland that combined source apportionment tech-
niques with personal exposures in microenviron-
ments (Jantunen et al., 2004). After categorizing US
county population densities into the same bins as
Nigge (2001) and separating the impacted popula-
tions into within and outside of 100 km from the
source, we calculated iF(p) that were 3–8 times
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Table 4

Comparison of mean mobile source intake fractionsa from selected studies to the present study

Study Evans et al. (2002) Marshall et al. (2003) Marshall et al. (2005) Nigge (2001)

Scale of iF National Local Local Local and national

Number of sites modeled 20 rural, 19 urban 4 1105 NA

Model CALPUFF

Monitoring and time

activity NATA

GPM foro100 km;

WTM otherwise

iF(p)

Previous estimates 9.0, 9.4 77c 7.2c 8–19

Present studyb 1.8, 9.8 13 2.6 1–7

iF(as,SO2)

Previous estimates 0.14, 0.12 NA NA NA

Present studyb 0.52, 1.7 — — —

iF(an,NOx)

Previous estimates 0.024, 0.024 NA NA NA

Present studyb 0.10, 0.23 — — —

aAll iFs are presented in units of per million.
bThe present comparisons only reflect the counties included in previous studies or equivalent population density areas, and not national

average values. Where local iFs were reported, we also compare just the local portion of the national iF.
cMarshall et al. reported iFs using breathing rate of 12.2m3 d�1. The above values reflect a BR of 20m3 d�1 to be comparable to the

present study.
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lower than those found in Germany. However, the
long-range component of the Nigge iF(p) was
assumed to be a constant for all population density
ratios, while we found this component of the iF to
vary by a factor of 10.

Another study examined power plant iFs using
S–R matrix for 507 power plants across the US
(Wilson, 2003). This provides a unique comparison
point for our mobile source estimates, since the
same iF methodology and underlying S–R model
were employed. By comparing the iFs for the
counties where power plants were located, we can
gain insight about the difference in iF for a ground-
level source and an elevated stack. As expected, we
found the mobile source iFs to be greater than the
corresponding power plant iFs, although the
magnitude of the difference varied across sites
(Fig. 4).

In addition to the magnitude, we can compare the
spatial extent for power plants versus mobile
sources. Wilson, 2003, found that half of the total
exposure for iF(p), iF(as,SO2), and iF(an,NOx) was
reached by a median distance of approximately
990 km for all three PM2.5 components. For mobile
sources, we found the median distance for the
corresponding counties for three iF values to range
between 150 and 640 km, signifying population
exposures closer to the source as well as greater
differences between primary and secondary fine
particles. Thus, better model resolution may not
offer any additional utility in estimating power
plant iFs, but might be necessary for mobile
sources, especially in dense urban areas where much
of the total exposure is captured close to the source
county.

There are several limitations to this analysis,
many of them to do with S–R matrix, the reduced-
form model that was the basis of the iF calculations.
Firstly, S–R matrix had geographic and temporal
resolution limitations. Geographically, S–R matrix
resolution was limited to county-level. Counties
vary in size across the US, with eastern counties
tending to be smaller, thus having better model
resolution. As concentration impacts are assumed
to be spread equally over a county, some areas
within the county will be underestimated while
others will be overestimated, leading to exposure
misclassification. If population distribution and
concentration impacts are highly correlated, this
model will underestimate the population exposure.
Furthermore, the spatial extent of the iF may have
been overestimated due to coarse geographic model
resolution. In some urban areas where much of the
total exposure occurs within the county, finer model
resolution is necessary. However, S–R matrix served
the purposes of this analysis by providing insight
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Fig. 4. Ratio of mobile source to power plant intake fractions. For each distribution, horizontal lines on the box indicate the 25th, 50th

(median), and 75th percentiles, while the dotted line indicates the mean. The dots outside the whiskers show the 5th and 95th percentile

values.
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about geographic areas where more resolved mod-
eling might be needed, in the spirit of iterative risk
assessment.

Temporally, S–R matrix was limited to annual
average concentration impacts. Mobile source im-
pacts vary diurnally and seasonally, neither of
which is captured in the model. Previously men-
tioned local mobile source studies that presented
higher iF results than this one made use of methods
that better capture spatial and temporal resolution,
or time-activity patterns. Our focus on only ambient
concentrations may have underestimated total
exposure from mobile sources. For example, a
recent study reported that the total mass of bus
exhaust inhaled by students commuting on a diesel
bus was comparable in magnitude to the total mass
of bus exhaust inhaled by everyone else in the
SoCAB (Marshall and Behrentz, 2005), emphasiz-
ing the importance of microenvironments to mobile
source exposures. However, it could be argued that
ambient exposure at a representative site within a
county is most meaningful for risk assessment at the
present time. The two largest PM2.5 mortality
epidemiological cohort studies commonly used in
risk assessment applications rely upon annual
average ambient concentrations from central site
monitors (Pope et al., 2002; Dockery et al., 1993). In
a risk assessment application, the iF multiplied by
the emissions reduction and normalized by the
breathing rate can be combined directly with a
mortality concentration-response function (assum-
ing linearity) to estimate public health benefits of air
pollution control.

In addition, the treatment of secondary sulfate
and nitrate chemistry in S–R matrix was somewhat
simplified. However, previous studies have shown
that S–R matrix yields similar secondary PM2.5

intake fraction estimates as more complex models
such as CALPUFF (Levy et al., 2003) or REMSAD
(Abt Associates et al., 2000). Moreover, S–R matrix
has been used by EPA in past regulatory impact
analyses (US Environmental Protection Agency,
1999d), indicating that interpretation of its outputs
could be useful. Another limitation of S–R matrix
was the lack of adequate treatment of secondary
organic aerosols (SOA). In more polluted areas of
the US, organic carbon (OC), a mix of primarily
and secondarily generated organic compounds, can
contribute 10–40% of the PM2.5 mass (Seinfeld and
Pandis, 1998). Although S–R matrix allowed us to
estimate secondary ammonium sulfate and nitrate
formation, it did not allow us to adequately estimate
SOA formation from volatile organic compound
reactions. Although it may be a non-negligible
contributor to mobile source PM2.5, we would not
expect the relative values of iF(p), iF(as,SO2),
iF(an,NOx), iF(an,SO2) to change with the inclusion
of SOA impacts. Future studies should address
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SOA intake fractions, as well as other potentially
important contributors to public health benefits
from mobile source emission controls, such as ozone
from NOx and VOCs.

More general concerns could be raised regarding
the reliance on atmospheric dispersion models to
estimate iF values, as opposed to relying on
monitoring data and other empirical evidence.
However, it would be difficult to extract from
monitoring data the marginal contribution of a
single source category in a single geographic
location, and impossible in downwind areas where
the absolute impact is smaller. Other approaches
would also be unable to address critical questions
regarding spatial extent and resolution. The primary
form of validation and uncertainty characterization
therefore comes from such features as calibrating
model outputs to ambient concentration measures,
as well as by verifying that iF estimates are similar
with different dispersion models (Levy et al., 2003;
Abt Associates et al., 2000).

Beyond S–R matrix, there are some additional
limitations in interpreting our regression models.
First, although the R2 values are quite high,
especially for iF(p), it is possible that this is driven
by the skewed distributions of iF since significant
outliers may remain. Fig. 5 compares the iF(p)
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predicted by the MLR model to the iF(p) calculated
from Eq. (1). Most of the 3080 regression model
outputs fall within a factor of 2 of the actual values,
though some of the high iF(p) tend to be under-
estimated and some of the low iF(p) tend to be
overestimated by the MLR model. Some coastal
settings, for which a radial population parameter
does not capture the distribution of exposed
individuals downwind of the source county, have
greater errors. Furthermore, an examination of the
Pearson correlation coefficients revealed significant
correlation between the exhaustive population pre-
dictors. Although this might inflate or deflate the
standard errors, the parameter estimates themselves
should be unaffected. Still, we developed simple
linear regression models for each of the iFs versus
each of the exhaustive population predictors and
found results consistent with the MLR models.

Finally, the application of our estimates or
regression models outside of the US should be
undertaken with caution, as meteorology, popula-
tion patterns, and myriad other factors impacting
the intake fraction might be different. The un-
certainty associated with our regression models has
been understated by the R2 values reported in
Table 3, as these values only represent the extent to
which the chosen population predictors in the MLR
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model explain the variation in iFj, not agreement of
our data with monitoring data or other forms of
validation.

In spite of these limitations, our findings provide
some important guidance for both public policy and
future modeling efforts. For example, we can estimate
the relative public health benefits of a 1 ton reduction
in primary PM2.5, SO2, and NOx emissions by
comparing emissions-weighted iF values for power
plants and mobile sources (appropriate if such a
reduction were distributed across the US in propor-
tion to current emissions). Assuming a linear dose-
response function for PM2.5 mortality where all
particles have equal toxicity, we would expect the
public health benefits of a 1 ton reduction of primary
PM2.5 emissions from mobile sources to be 2.7 times
greater than from power plants. The corresponding
ratios are 2.2 for SO2 emissions and 2.4 for NOx

emissions. However, it is important to remember that
these ratios vary spatially across the US and any
regional pollution control strategies need to take that
into account. For example, although the 507 power
plants emitted four times more SO2 than the mobile
sources in S–R matrix, there are some settings where
the health benefit per unit emissions is more than four
times greater for mobile sources, indicating that
mobile sources should not be dismissed as an
important contributor in some settings.

One of the primary goals of this analysis was to
determine which types of atmospheric dispersion
models to use in a risk assessment context. Our
analysis indicates that national-scale dispersion mod-
els with county-level geographic resolution, such as
S–R matrix, are appropriate for secondary PM2.5 or
primary PM2.5 emitted in rural areas, but that the
substantial contribution of near-source populations
to primary PM in urban areas warrant more resolved
dispersion models to better inform risk-based reg-
ulatory decisions. In dense urban areas, in particular,
near-source models with better resolution may be
necessary to adequately capture the variation in
mobile source iF that can occur within the county,
as well as to yield an accurate estimate of the average
iF for that county. In high-density settings, monitor-
ing may provide a useful supplement to near-source
models, if a significant portion of the iF were found
to occur in close proximity to the source.

5. Conclusions

This study has provided comprehensive estimates
of primary and secondary PM2.5 mobile source
intake fractions across the US at county-level
resolution. Mean primary PM2.5 iFs (on the order
of 1 per million) were 1–2 orders of magnitude
larger and exerted their impact closer to the county
where mobile sources emissions originated than
secondary PM2.5 iFs. Since a good deal of the
national primary PM2.5 iF exposure occurred close
to the source county in dense urban areas, near-
source models with finer resolution may be neces-
sary to better capture the variation in exposure at
better geographic resolution. Multiple linear regres-
sion models using exhaustive population predictors
explained a substantial amount of variation in
national primary and secondary PM2.5 iFs. Com-
pared to power plants, the mobile source iFs tended
to be larger and exhibit their impacts closer to where
the emissions originated due to lower stack heights
and co-location of populations with emission
sources. The use of a national-scale county-resolu-
tion model may be inappropriate for mobile source
primary PM2.5 iF in dense urban areas, but
sufficient for secondary PM2.5 iF and for power
plant iFs.
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