Winter air pollution and respiratory function

M Lippmann

Occup. Environ. Med. 2003;60;81-
doi:10.1136/oem.60.2.81

Updated information and services can be found at:
http://oem.bmj.com/cgi/content/full/60/2/81

These include:

References
This article cites 3 articles, 1 of which can be accessed free at:
http://oem.bmj.com/cgi/content/full/60/2/81#BIBL

Rapid responses
You can respond to this article at:
http://oem.bmj.com/cgi/eletter-submit/60/2/81

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

- Asthma (1209 articles)
- Children (1808 articles)

Notes

To order reprints of this article go to:
http://www.bmjournals.com/cgi/reprintform

To subscribe to *Occupational and Environmental Medicine* go to:
http://www.bmjournals.com/subscriptions/
Winter air pollution and respiratory function

M Lippmann

It is neither easy nor inexpensive to find significant air pollution health effects in contemporary populations in economically advanced countries with relatively clean air.

There has been growing concern about the effects of community air pollution on children for several reasons. These include:

1. A rapidly growing and generally coherent body of epidemiological studies showing statistically significant (albeit small) increases in relative risk for particulate matter (PM) associated mortality and morbidity, as well as relatively large ozone associated functional decrements.

2. A rapidly growing prevalence of asthma and wheeze among children, and a recognition that such children are at greater risk for air pollution related health effects than other children.

3. A recognition that children receive greater lung doses of airborne pollutants than adults because they spend more of their time in vigorous activity out of doors and breathe air more deeply into their smaller lungs.

In the paper entitled "Acute effects of winter air pollution on respiratory function in schoolchildren in southern England" by Peacock et al in this issue, the authors extended their earlier investigations of the effects of summertime air pollutant exposure in children from the same area in southern England. In their previous study of summertime exposures, the authors reported close agreement among the two independent measurements.

The observation of an association between a significant drop in PEFR and PM₁₀ in children with wheeze is about all that could have been expected given the study design, the size and nature of the population being studied, and the levels of ambient air pollution.

One message to take away from this study is that finding significant air pollution health effects in contemporary populations in economically advanced countries with relatively clean air is not easy or inexpensive. In the Peacock et al wintertime study, with an experienced team, state of the art air monitoring employed on a daily basis, and highly motivated student participants, school personal, and scientific staff, it was still not possible to come up with very definitive associations. Future investigations should be based on targets of opportunity with circumstances more favourable to the establishment of significant exposure-response relations.

ACKNOWLEDGEMENTS

Dr Lippmann's research is supported by the Particulate Matter Health Effects Research Center supported by the US Environmental Protection Agency (Grant No. R 827351), and by the National Institute of Environmental Health Sciences Center Grant (NIEHS), NIH (Grant No. ES-00260).

Occup Environ Med 2003;60:81

Author's affiliation

M Lippmann, New York University School of Medicine, Tuxedo, New York, USA

Correspondence to: Dr M Lippmann, Professor of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; lippmann@env.med.nyu.edu

REFERENCES

