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Henry, F. S., J. P. Butler, and A. Tsuda. Kinematically
irreversible acinar flow: a departure from classical dispersive
aerosol transport theories. J Appl Physiol 92: 835—-845, 2002.
First published October 26, 2001; 10.1152/japplphysiol.
00385.2001.—Current theories describe aerosol transport in
the lung as a dispersive (diffusion-like) process, character-
ized by an effective diffusion coefficient in the context of
reversible alveolar flow. Our recent experimental data, how-
ever, question the validity of these basic assumptions. In this
study, we describe the behavior of fluid particles (or bolus) in
a realistic, numerical, alveolated duct model with rhythmi-
cally expanding walls. We found acinar flow exhibiting mul-
tiple saddle points, characteristic of chaotic flow, resulting in
substantial flow irreversibility. Computations of axial vari-
ance of bolus spreading indicate that the growth of the
variance with respect to time is faster than linear, a finding
inconsistent with dispersion theory. Lateral behavior of the
bolus shows fine-scale, stretch-and-fold striations, exhibiting
fractal-like patterns with a fractal dimension of 1.2, which
compares well with the fractal dimension of 1.1 observed in
our experimental studies performed with rat lungs. We con-
clude that kinematic irreversibility of acinar flow due to
chaotic flow may be the dominant mechanism of aerosol
transport deep in the lungs.

lung; deposition; chaos; fractal; particulate pollution

CONVECTION AND DIFFUSION ARE the two major mecha-
nisms of mass transport for gas molecules and submi-
crometer aerosols in the pulmonary acinus. For gas
transport, diffusion dominates at distances comparable
to acinar size and over times comparable to breathing
frequencies, and, therefore, theories based on diffusion
are probably adequate. By contrast, the particle diffu-
sivity of submicrometer-sized aerosols is very small,
and, therefore, acinar convection, even though it is in a
quasi-Stokes viscous flow regime (26), is correspond-
ingly more important and may dominate aerosol trans-
port. However, current theories describe aerosol trans-
port as a dispersion (diffusion-like) process (e.g., Refs.
7, 10, 11, 19, 34). These theories are based on the
following two key assumptions: 1) acinar flow is basi-
cally kinematically reversible (i.e., during expiration
each fluid particle retraces the path taken during in-
spiration) (9, 45), and 2) all processes (including the
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coupling of Brownian diffusivity with the convective
flow field and any kinematic irreversibility that may be
present) that contribute to irreversible aerosol bolus
spreading can be characterized as axial mixing with an
effective longitudinal diffusivity (Deg). The first as-
sumption is based on classical fluid mechanics (36),
and the second assumption is substantially equivalent
to Taylor dispersion (35). As most aerosol studies are
currently interpreted in the framework of these disper-
sion theories, experimental data are often reduced and
analyzed through the use of some D (e.g., Ref. 30),
and many of the recent theoretical research efforts are
focused on refining D for better fit to experimental
data, through which new insights into acinar transport
mechanisms are sought (e.g., Ref. 6).

Our laboratory’s recent findings (37—-41), as well as
those of others (8, 18), however, have questioned the
validity of the basic assumptions that formed the basis
of the dispersive theories. We have demonstrated that,
because of the peculiar geometry of the alveolated duct
and its time-dependent motion associated with tidal
breathing, under certain conditions, alveolar flow can
be chaotic (16, 40). As a consequence, acinar flow can be
kinematically irreversible, even though it is a low-
Reynolds number viscous flow, and lung expansion and
contraction are approximately self-similar and revers-
ible (1, 13, 14, 24, 46). These findings are supported by
a discovery in fluid mechanics that chaotic mixing can
occur even in a viscous flow (2, 25). We have also
developed a theoretical analysis (5) to show that cha-
otic mixing is radically different from diffusive mixing.
In chaotic acinar flow, a tracer bolus undergoes cyclic
stretch-and-fold deformation, resulting in the induc-
tion of finer and finer scales in tracer profile with
repeated breaths. This process soon reaches a critical
moment at which the lateral distance between adjacent
tracer striations becomes comparable to the diffusion
distance. A burst of mixing occurs at this moment, and
mixing is quickly completed.

The objectives of the studies reported here are,
through numerical simulations of bolus experiments,
to provide key data showing that the behavior of par-
ticles in a rhythmically expanding, multiply alveolated
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CHAOTIC MIXING IN THE ACINUS

A
proximal
end 2
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r
Fig. 1. Schematics of moving walled
models. A: 9-cell alveolated duct model.
B: isolated cell alveolated duct model.
C: nonalveolated smooth-wall model.
C

duct flow, with a saddle point and associated vortexes
in each air pocket, does not satisfy the fundamental
assumptions of any dispersion theory and that the
shape of a tracer bolus evolves to a stretch-and-fold
fractallike pattern, similar to those found in flow visu-
alization experiments in rat lungs (Tsuda A, Butler JP,
and Rogers RA, unpublished observations). The results
suggest that 1) kinematic irreversibility is the origin of
aerosol transport, 2) axial transport cannot be charac-
terizable by an effective diffusivity, and 3) fractal tra-
jectories can occur in most of the alveoli in the acinar
tree. The alternative mechanism of aerosol transport
that we propose here may, in fact, be the dominant
mechanism determining deposition of submicrometer
particles deep in the lung.

METHODS

In a previous investigation (40), we used the single-alveo-
lus model to explore the basic physics operating in a viscous
flow subjected to cyclic alveolar wall motion. The alveolus
model used in the present investigation is also axisymmetric
but comprises a central circular channel around which are
placed nine tori, equispaced in the axial direction (Fig. 1A).
Details of a typical cell are given in Fig. 2. The duct and
alveolar walls move in a perfectly kinematically reversible,
simple sinusoidal manner with a specific volume excursion C
0f' 25% [C = (Vmax — Vmin)/Vmin, Where Viax and Vi, are the
maximum and minimum volumes of the model, respectively]
and a cycle period T of 3 s. These correspond roughly to
typical tidal ventilation and respiratory period in human.
Any length scale L of the model changes as L(¢) = L[1 + K
sin(nt)], where L is the mean L value, ¢ is time, n = 2n/T, and
K= (b — Db + 1), where &b = (1 + C)**. A smooth-walled,

closed-end duct is fitted to the distal end of the model. The
closed-end duct is used to approximate the airway distal of
the site of interest up to the terminal alveoli, and it is also
used to control the Reynolds number of the flow in the model.

Fig. 2. Expanded view of a typical alveolar cell. Rp (= 250 pm), duct
radius; Ra (= 200 pm), alveolar radius; La (= 346 um), alveolar
opening length; L¢ (= 413 um), alveolar cell length; Qp, ductal
volume flow rate; Qa, alveolar volume flow rate; y (= 60°), alveolar
half-opening angle; Cr, duct center line. Note that the alveolar
corners were rounded with the corner radius = 0.02 Rp.
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The walls of this duct also move in the same sinusoidal
manner as the main alveolus model. The mean length of this
duct, Lp, controls the bulk velocity U of the fluid entering the
model; ie., U = Q/mR? = 3nKLp cos(nt), where Q is the
volume flow rate and Rp is the duct radius. The root mean
square (RMS) Reynolds number Regrms = Urms Rp/v, where
Urms is the RMS U and equals Uma/V2, where Upmax is
maximum U, Rp is the mean Rp, and v is the kinematic
viscosity. Regrms ranges from 0.006 to 0.728 in the alveolated
region of the model. Using a closed-end duct has the added
advantage of avoiding the difficulty of defining appropriate
boundary conditions at the downstream boundary of the
alveolated section. Typically, Lp/Rp is >100, and, hence, it
can be assumed that the end of the closed-end duct was
sufficiently far from the downstream boundary of the alveo-
lated section so as not to affect the flow across this boundary
adversely. As a further refinement to the original model, the
sharp corner at the intersection between the alveolus and the
duct is replaced by a more natural circular section. For
comparative purposes, two other cases are also simulated.
One is the flow in an isolated alveolus model (Fig. 1B),
similar to that used in Tsuda et al. (40), and the other is the
flow in a nonalveolated, rhythmically expanding straight
tube (Fig. 10).

The flow field is defined by the full, incompressible Navier-
Stokes equations, which are solved numerically on a
multiblock, body-fitted moving grid using the finite volume
code CFX-4 (CFDS, AEA Technology, Harwell, UK). This
general-purpose, pressure-correction code offers a variety of
discretization schemes and solution techniques. In these cal-
culations, central differencing is used to model the convection
terms, and the implicit backward Euler method is used to
advance the solution in time. A combination of the SIMPLEC
pressure-correction method (44) and the Rhie-Chow (28) al-
gorithm to eliminate pressure oscillations on the collocated
gird (12) is used in the formulation of the discrete equations.
Stone’s method (33) is used to solve the discrete velocity
equations, and the method of preconditioned conjugate gra-
dients (see, for example, Ref. 22) is used to solve the discrete
pressure correction equation. At the inlet, a constant-pres-
sure boundary is defined. The value of the pressure on this
boundary is set arbitrarily to zero, and, as for incompressible
flow, only the pressure gradient is of importance. The no-slip
condition is enforced on all solid surfaces, which, in the case
of moving walls, means that the fluid matches the wall
velocity at the fluid-wall interface. Tests were carried out to
ensure that the solutions are grid independent and con-
verged. For example, increasing the number of grid cells by
30% above that which was eventually used produces an
increase of only 0.16% in the predicted maximum velocity.
The final 73-block grid had a total of 38,349 active cells. With
the use of a measure of error due to using backward Euler
time stepping, suggested by Roache (29), a time step of 7/240
is found to give sufficiently accurate results in that further
reductions in the size of the time step used does not produce
any significant reduction in the error. These simulations are
computationally intensive, with one breathing cycle taking
~350 h on a Sun Ultra 10.

Particle trajectories are calculated in all three models
using a special-purpose tracking routine. This routine reads
a full cycle of flow field and grid data produced by CFX-4 and
uses this data repeatedly, cycle after cycle, and a predictor
and corrector method to track individual particles (fluid ele-
ments) over as many cycles as required. The time step used in
the particle tracking routine is set independently of that for
the flow-field solution. Before the particle track is advanced
to the next time, the time step is recalculated, using local flow

conditions, to ensure that the particle does not step out of the
solution domain. At each particle-track time, a grid and flow
field are created from the CFX-4 data using bicubic interpo-
lation in space (27) and linear interpolation in time. For
numerical efficiency, the routine solves the particle tracks in
a stationary computational space, and, at each time step, the
particle position is mapped back to physical space before it is
written to an output file. The maximum error in the predicted
particle position is estimated to be 0.2% of the distance
traveled by the particle, and, in most cases, the error is
considerably smaller than this.

RESULTS

Flow patterns. Solving the velocity field of the carrier
gas on a moving grid over the physiologically relevant
range of flow parameters (Regrms < 1) in a rhythmically
expanding and contracting, multiply alveolated duct,
we often detected the presence of slowly rotating recir-
culation in each alveolus (see Fig. 3, A and B). The size
of the recirculation flow depends on the ratio between
the alveolar flow (Qa) (i.e., flow produced by the volume
change of the alveolus) and the volumetric ductal flow
(Qp) (Qa/Qp). Similar to our previous study (40), we
found that the smaller the Qa/Qp, the larger the alve-
olar recirculation. When Qa/Qp is larger than ~0.1,
however, the alveolar flow is largely radial without
recirculation (Fig. 3C). Because, under normal breath-
ing conditions or during moderate exercise, the value of
Q4/Qp is usually <0.05 in the majority of alveoli along
the acinar tree (from the respiratory bronchioles to the
last few generations) (37), we expect that most of the
alveoli are likely to possess recirculation in their flow
field. Importantly, the presence of alveolar recircula-
tion in the cyclically expanding alveoli is topologically
associated with the existence of a stagnation saddle
point in each alveolar flow field (40), implying that
chaotic mixing could originate in most of the alveoli
(see DISCUSSION).

Interalveolar kinematic mixing. To demonstrate the
effects of a series of saddle points on fluid flow irrevers-
ibility, the motion of massless particles was tracked
over one ventilation cycle in a nine-cell alveolar model
for three different ranges of Qa/Qp (0.0050 < QA/Qp <
0.0053, 0.040 < QA/Qp < 0.069, and 0.081 < QA/Qp <
0.577 shown in Fig. 4, A, B, and C, respectively). The
particles were initially placed on radial lines across the
duct midway between alveoli at three different initial
axial locations (shown as three different colors, brown,
green, and pink, in Fig. 4). As soon as inspiration
begins, particles near the center line convect distally,
proportionally to the bulk mean velocities (see ¢/T =
0.25 in Fig. 4). The lines of particles quickly approach
each other and comigrate along the central channel,
particularly in the cases of smaller QA/Qp (Fig. 4, A or
B). The particles that were located initially near the
alveolar opening enter the alveolus (Fig. 4). The depth
of particle penetration into the alveolus during inspi-
ration depends on the size of alveolar recirculation.
When the alveolar recirculation is large (Fig. 4A), the
particles penetrate deep into the alveoli, and the par-
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Fig. 3. Typical streamline patterns at the peak inspiration with
various flow conditions. A: Reynolds number root mean square
(ReRMs). = '0.714, ratio of Qa to Qp (QA/QD)v = '0.005. B: Rerms =
0.077, Qa/Qp = 0.047. C: Rerms = 0.030, Qa/Qp = 0.119. Insets:
saddle points (arrowhead) near the proximal corner of alveoli.

ticles from the three different lines appear to be mixed
during inspiration (see t/T = 0.25 and 0.5 in Fig. 4A).

As expiration starts, the particles start to move in a
proximal direction. The reversibility of the particle
motion is largely influenced by both the presence and
the size of alveolar recirculation. When the alveolar
recirculation is large (Fig. 4A), the particles exhibited
three types of behavior. For type I, some particles,
which were deep inside the alveolus at the end of
inspiration, do not exit and remained trapped inside
after expiration. For type II, particles that were inside
the alveolus at the end of inspiration exit during expi-
ration but do not come back to their original starting
positions. For type III, particles near the center line

that remained in the central channel during inspira-
tion virtually retrace their inspiratory paths during
expiration and thus arrive back very close to their
original starting position. Comparing these three types
of particle behavior, we notice that particles that were
associated with alveolar recirculation (even for a short
period of time) followed irreversible trajectories. When
the alveolar recirculation is present but small (Fig.
4B), no particles are trapped in the alveolus, suggest-
ing that the effects of small alveolar recirculation are
insufficient to cause particle trapping. However, parti-
cles initially located near the side walls (which even-
tually became associated with alveolar recirculation)
still display irreversible motion (type II). Particles that
start near the channel center line come back to their
original starting position (type III). In the complete
absence of alveolar recirculation (Fig. 4C), the motion
of all particles, even those that traveled inside the
alveolus, is reversible.

For the purpose of comparison, the following two
additional cases were also conducted: massless parti-
cles were tracked in a single-cell model and in an
expandable straight-tube model (data not shown).
Whereas the particles in the single-alveolus model,
similar to the nine-cell alveolar model, exhibit some
irreversibility, especially near the walls (type II), the
particles in the expandable straight tube are reversible
as predicted (42).

Motion of interface between inhaled tracer fluid and
the host alveolar residual fluid. Regarding massless
tracer particles as marked fluid elements, the interface
between one fluid and another can be approximated by
chords connecting initially adjacent particles (Fig. 5A).
In our studies, this piecewise linear approximation to
the interface can represent the front of incoming tidal
gas or a tracer bolus facing the host alveolar residual
gas. As we have demonstrated in Fig. 4, A and B, the
kinematically irreversible deformation of the tracer
interface seems to be due to its association with alve-
olar recirculation flow over the respiratory cycle. Thus
characteristics (e.g., size and strength) of the alveolar
recirculation may be major determinants in these pro-
cesses. Our studies described here focus on the situa-
tion that presumably occurs deep in the acinus, where
the alveolar flow exhibits a medium- to small-sized
recirculation (Fig. 3B). Larger alveolar recirculation
flow (Fig. 3A) is likely to occur near the entrance of
acinus (e.g., respiratory bronchioles), and that case is
discussed elsewhere (38).

To understand the temporal evolution of interface
deformation (approximated as described above) in the
case of flows with medium-sized alveolar recirculation,
we monitored the motion of a tracer bolus for three
cycles. In these simulations, we systematically in-
creased the number of massless particles P (P = 2/,
where j = 3, 4, 5,...,13). For each P, the initial radial
distribution of particles was adjusted in such a way
that each particle represented equal cross-sectional
annular area. Over each cycle, the interface progres-
sively deforms into “fingerlike” protrusions located es-
pecially near the duct walls (Fig. 5B). Each protrusion
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A B

tT=0.0 tT=0.0

tT=1.0

tT=0.25

Fig. 4. Interalveolar mixing. Massless (fluid) particles
were tracked, starting from 3 different initial axial
locations (shown as 3 different colors) with 3 different
flow conditions. A: 0.0050 < Qa/Qp < 0.0053, 0.728 >
4T=0.5 Rerms > 0.690. B: 0.040 < Qa/Qp < 0.069, 0.092 >
Rerms > 0.053. C: 0.081 < Qa/Qp < 0.577, 0.045 >
Rerms > 0.006. Five different time points in each sim-
ulation were shown: time (¢)/cycle period (7)) = 0 (ini-
tial), ¢#/T = 0.25 (peak inspiration), ¢/T' = 0.5 (end inspi-
ration), t/T' = 0.75 (peak expiration), and #/T' = 1.0 (end
expiration). Note that, in A and B at end inspiration,
many particles are distal of the alveolated portion of the
model and hence are not visible in the views given.

tT=0.75

vT=1.0
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Fig. 5. Fluid interface between incom- { Ak
ing air and alveolar residual gas. A: R3 = = = = ==
initial position of fluid interface shown
by straight-line chords connecting ini- B
tially adjacent particles. For definition Inset-2
of symbols Q, R1, R2, R3, s1, s2, s3, Inset-1
Alv-1, Alv-2, Alv-3, see DISCUSSION. B:
the interface shows “fingerlike” protru-
sions at the end of the first cycle. Inset [ —a—a—— S "\
1: each protrusion consists of complex
stretched-and-folded patterns. Inset 2:

similar and finer stretched-and-folded
patterns appear as the scale becomes
finer. Flow conditions in the 9-cell
model: 0.040 < Qa/Qp < 0.069, 0.092 >
Rerms > 0.053.

50pm
Proximal — — — —.—

consists of complex stretched-and-folded patterns (Fig.
5B, inset 1), and, moreover, as the scale becomes finer,
similar and finer stretched-and-folded patterns are re-
vealed (Fig. 5B, inset 2). This suggests that the ob-
served patterns might be qualitatively self-similar over
a wide range of length scales. Such self-similarity is
characteristic of fractal geometry observed in many
chaotic systems (32).

To quantify the extent of stretch-and-fold flow irre-
versibility and especially to test whether axial spread-
ing could be described by an effective diffusivity, we
analyzed the shape of the tracer in axial and lateral
directions separately. To characterize the axial phe-
nomena, the axial variance (¢2) of distribution of par-
ticles was computed and plotted vs. cycle number (V)
as a family in the P employed (Fig. 6). The results show
that o2 is independent of P and grows exponentially
with increasing N [02 = 0.0474(e%*°™N — 1)]. It is
important to note that o2 does not increase linearly
with N; this observation is fundamentally inconsistent
with the predictions of the classical dispersion theory
(discussed below).

To characterize the lateral phenomena, we examined
the extent of tracer stretching [AL/L, = (L — L,)/L,,
where L, (= 3F_i|xz+1 — xi; xz is the kth particle
position) is the initial length of the tracer, and L
(=3P _|Xp+1 — Xi|; Xi is the kth particle’s mapped

centerline

0.10+
0.08 1 -

0.06 1 ¥ s

Axial Variance (%)

0.04 £

0.02 4

0.00

0 1 2 3
Cycle Number (N)

Fig. 6. Axial variance (o) of particle distribution plotted vs. cycle
number (N) as a family in the number of the particles (P). v, P = 512;
A, P=1024;u, P =2,048; ¢, P = 4,098; @, P = 8,192; dashed and
dotted lines show linear growth (02 = 0.0271N) and exponential
growth [0 = 0.0474 (4N — 1)], respectively. Flow conditions in
the 9-cell model: 0.040 < QA/Qp < 0.069, 0.092 > Rerms > 0.053.
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180+

160+

140+

120+

100+

AL/Ly-1

0 1 2 3
Cycle Number (N)

Fig. 7. Tracer stretching (AL/L,, where L is length and L, is initial
length) at end expiration plotted vs. N as a family in the P. v, P =
512; a, P = 1,024; u, P = 2,048; ¢, P = 4,098; ®, P = 8,192. Flow
conditions in the 9-cell model: 0.040 < QA/Qp < 0.069, 0.092 >
Rerms > 0.053.

position) is the tracer length at end expiration] and the
pattern of the tracer. AL/L, was plotted vs. N as a
family in P (Fig. 7). The results show that the length of
the tracer dramatically increases with increasing N

2

and that this increase in AL/L, is strongly depended on
the P used to approximate the interface. (Note that this
behavior is different from the axial phenomena in
which the growth of 62 is essentially independent of the
P.) Furthermore, the tracer length grows exponentially
with N if a large P (P > 4,096) is used for simulation.
Because the reciprocal of P is a parameter related to
scale resolution in our simulation, the fact that the
increase in AL/L, with N strongly depends on P sug-
gests that the resulting pattern of the tracer is fractal.
To test this possibility, we examined the spatial pat-
tern of all of the particles (~16,000) used for the sim-
ulation described above at the end of every cycle by
employing the fractal analysis method of box-counting
technique popularized by Glenny (15). Briefly, the test
section of interest (usually the most particle-dense
area) (Fig. 8, inset) was covered by M square boxes,
each with an edge length E. Denoting the particle
concentration in the ith box by p; and the overall mean
concentration by 1, we computed the standard devia-
tion [SD? = X (w; — 1)%M] and coefficient of variation,
CV = SD/p. of the set of concentrations ;. This proce-
dure was repeated for box sizes spanning more than
four orders of magnitude for the field of interest. A
log-log plot of CV vs. E? reveals a linear relationship
with slopes of —0.21, —0.25, and —0.25 for N = 1, 2,
and 3, respectively (Fig. 8B). This indicates a power
law relationship between the tracer particle distribu-
tion and the resolution of the analysis and that, there-
fore, the tracer pattern resulting from kinematically

Fig. 8. A: distributions of massless (fluid) parti-
cles at N = 1 (green), N = 2 (blue), and N = 3
(red). Approximately 16,000 particles are shown
for each N. B: box-counting analysis. A linear
relationship on log[coefficient of variation (CV)]
vs. logledge length (E?)] with a slope of —0.2
shows that the pattern of particle distribution is
fractal with a fractal dimension D~ 1.2. Flow
conditions in the 9-cell model: 0.040 < QA/Qp <
0.069, 0.092 > Rerms > 0.053.
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irreversible acinar fluid mechanics may indeed be frac-
tal with a fractal dimension D~ 1.2 (D = 1 — slope; Ref.
3). Remarkably, this dimension is close to that found in
our animal experiments (unpublished observations,
also see DISCUSSION).

DISCUSSION

The principal findings of this study are that 1) cha-
otic fluid motion occurring in a rhythmically expanding
and contracting, multiply alveolated duct induces sub-
stantial kinematic irreversibility in the acinus, even
under low-Reynolds number flow conditions, and 2)
mixing due to this kinematic irreversibility is funda-
mentally different from the mixing described in disper-
sive processes.! A tracer (bolus) subjected to the cha-
otic flow field is deformed both axially and laterally.
The o? of particle distribution increases exponentially,
rather than linearly, with increasing cycle time; thus
axial bolus spreading does not obey the basic rules
described in classical diffusive transport theories (35).
The cycle-by-cycle evolution of lateral particle distribu-
tion is even more complex. The tracer forms fingerlike
protrusions, even after one cycle. The tracer length
exponentially increases as N increased, forming char-
acteristic stretch-and-fold fractal-like patterns.

Chaotic mixing in the pulmonary acinus. Viscous
flow has been considered kinematically reversible if the
boundary motion is reversible (36, 45). In the mid-
1980s, however, there was a breakthrough discovery in
fluid mechanics, namely, that even Stokes flow can be
kinematically irreversible if the structure of the flow is
chaotic (2, 25). In the last several years, applying this
new concept to respiratory fluid mechanics, our labo-
ratory has been studying the role of chaotic flow phe-
nomena in the experimentally observed, yet theoreti-
cally unexplained, convective mixing occurring in the
lung periphery (5, 16, 37, 40). In our laboratory’s pre-
vious numerical study (16, 40), we reported that cha-
otic flow and chaotic mixing can occur in the alveolated
duct because of its peculiar geometry and time-depen-
dent motion associated with tidal breathing. We found
that acinar flow was often slowly rotating in the alve-
olar air pocket, and the velocity field near the alveolar
opening was complex with a stagnation saddle point
typical of chaotic flow structure. Performing Lagrang-
ian fluid particle tracking, we further demonstrated
that, in such a flow structure, the motion of fluid, x(¢),
could be highly complex, irreversible, and unpredict-
able even though it was governed by simple determin-
istic equations [x(¢) = [ v(x,t)d¢, x(0) = x,, Wwhere v(x,t)
denotes Eulerian velocity field].

Our initial, numerical investigations performed in a
simplified system with an isolated, single alveolus
were aimed at discovering and understanding the basic
physics operating in a rhythmically expanding alveolar
flow (16, 40). These studies, however, did not address

1Tt is unlikely that the results on kinematic irreversibility in this
paper are important to ventilation-perfusion matching, but a quan-
titative assessment of this remains open.

the cumulative effects of multiple alveoli (i.e., a series
of saddle points) on the fate of inhaled aerosols. There
are roughly 300 million alveoli in the human lung
(~10,000 alveoli in each of ~30,000 acini) (17). This
means that, in each acinus, the incoming tidal air may
sample roughly 200 alveoli along a longitudinal path-
way, from the entrance of an acinus to the terminal
alveolar sac (here, we assume that alveoli are uni-
formly spaced in nine intra-acinar airway genera-
tions). As demonstrated in Figs. 3 and 4, a series of
saddle points and associated vortexes in each air
pocket, generated in a cyclically expanding, multiply
alveolated duct, make the supposedly reversible low-
Reynolds number acinar flow highly irreversible and
can cause substantial interalveolar convective mixing.

In the context of flow irreversibilities associated with
multiple saddle points, it is important to recognize that
the estimates that we obtain in this work may signifi-
cantly underestimate the importance of convective
mixing. In particular, we have explicitly assumed and,
therefore, constrained the flow field to be axisymmet-
ric, which is to say that all azimuthal velocity compo-
nents (i.e., the component in the direction perpendicu-
lar to the r-z plane) are zero. This would imply that the
presence of a saddle point in the longitudinal section
would be associated with a saddle “line” or “circle”
around the ductal axis. Such a flow structure is not
only highly unlikely but also would be expected to be
unstable and to break into a separate sequence of
saddle points. Any such failure to preserve axial sym-
metry would thus enhance whatever convective mixing
is already associated with the axisymmetric alveolated
geometry.

Fingerlike protrusion. In this study, a line of mass-
less particles was introduced in the alveolated duct to
represent a fluid-fluid interface (Figs. 4 and 5A). The
behavior of this interface, such as its reversibility and
irreversibility, changes in its shape and size and con-
tains crucial information for understanding the mech-
anism of mixing between inhaled particles and alveolar
residual gas. By tracking the motion of the tracer
particles, we have followed the motion of this interface
over several cycles. Because the boundary of this line,
shown as the point Q in Fig. 5A, is stationary on the
wall because of the no-slip condition, the line expands
when the alveolar walls expand during inspiration,
and the line also tends to contract when the walls
contract during expiration. However, the reversibility
of this process depended on the nature of the flow fields
sampled during expansion and contraction. The seg-
ments of the line near the channel center line are
enormously stretched axially (see Fig. 4) and sample
mostly reversible Poiseuille-like ductal flow fields (Fig.
3). Consequently, the interfacial line near the center
line also shows approximately reversible behavior (Fig.
5B). By contrast, the segments of the lines near the
walls (e.g., segments s1, s2, and s3 in Fig. 5A) sample a
series of irreversible alveolar flow fields (e.g., Alv-1,
Alv-2, and Alv-3, respectively, in Fig. 5A) and, conse-
quently, do not return to their original positions (Fig.
5B). Each of these line segments, separated by points
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that sample approximately reversible flow fields be-
tween alveoli (e.g., R1, R2, and R3) basically form one
finger after a cycle (Fig. 5B). The number of “fingers,”
therefore, roughly matches the number of alveoli distal
to the initial position. Although, in the present compu-
tational model, the number of alveoli that the tracer
samples is limited to six (due to computational con-
straints), in a real acinus, the inhaled bolus is expected
to encounter a larger number of alveoli (~200) along
the acinar longitudinal pathway. This implies that the
acinar airways are likely to be filled with many longi-
tudinal fingers after a few breathing cycles. This pre-
diction has been confirmed experimentally in our lab-
oratory’s recent flow visualization studies performed in
rat acini (39).

The size of each finger depended on its resident time
in alveolar recirculation. The line segments that were
closer to the side walls (e.g., s1 and s2) spent more time
in recirculation (Alv-1 and Alv-2, respectively) and
produced longer fingers. As the N increased, the tracer
repeatedly encountered alveolar recirculation; the
number of fingers rapidly increased, and they propa-
gated toward the channel center line. This global evo-
lution of the tracer pattern (i.e., rapid increase in the
number of fingers, cycle-by-cycle lateral propagation),
together with progressively finer scale tracer striations
(discussed below in detail), are important observations
because they indicate a substantial net enhancement
of lateral particle transport for deposition.

Axial phenomena—a departure from the conventional
dispersion theory. In current theories, aerosol trans-
port in the pulmonary acinus is described as a disper-
sion (diffusion-like) process, and the mixing phenom-
ena are couched in the language of a Dgg. The most
important feature of this approach is that, in any
process that is dispersive in the sense that it can be
characterized by an effective diffusivity, the variance of
a bolus asymptotically increases linearly in time (or N).
Phrased differently, the variance is an additive func-
tion over time. The reduction of experimental data
through the use of some D¢ has thus been the frame-
work by which many aerosol studies have been con-
ducted (e.g., Ref. 30). For instance, bolus spreading in
the tracheobronchial tree is commonly characterized
by the difference between the inhaled and exhaled
variances (proportional to H2, where H is the bolus
width at half height), given by VHZ,,—H%,, where
H.,;, is expiratory H and Hinsp, is inspiratory H (43).
This numerical maneuver is clearly based on the un-
derlying assumption of additivity of variances.

In sharp contrast to these ideas, the result of our
numerical experiment does not obey this basic rule
(Fig. 6). The o2 of bolus particle distribution grows
faster than linearly in time, in contrast to the linear
growth predicted by all theories that are characterized

by a Deg.2 It is important to emphasize here that

21n a recent theoretical study in fluid mechanics, Jones and Young
(21) showed that the axial variance of tracer fluid elements in
low-Reynolds number chaotic flow in a twisted pipe grows faster

mixing of kinematic origin (e.g., chaotic flow in the
acinus) has a fundamentally different nature from mix-
ing described in dispersive mechanisms; thus it cannot
be described by any D.gr.

Lateral phenomena (fractal patterns). The results of
our study show that complex flow phenomena can
occur in the lateral direction. Because of alveolar flow
irreversibility, the tracer (i.e., a series of line segments,
s1, s2, etc., in Fig. 5A) deforms at every cycle, forming
fine characteristic stretch-and-fold striation patterns
(see Fig. 5B, insets), on top of the global fingerlike
protrusion (Fig. 5B). Consequently, an enormously
large lateral diffusion surface (which is represented as
a stretched tracer line in our study) evolves over every
cycle, suggesting a substantial enhancement of lateral
particle transport and subsequent deposition on the
acinar walls. Interestingly, we found that exact esti-
mation of tracer length L was not possible because L
was strongly dependent on the number of particles
forming the tracer (Fig. 7). At sufficiently fine scales
(i.e., when the number of test particles used is suffi-
ciently large), the apparent L of the tracer increases
exponentially with increasing N.

The analysis of potentially fractal patterns by the
well-known method of box counting (32) was employed.
The analysis shows that the distribution of tracer par-
ticles evolve in a fractal-like manner, with D~ 1.2. The
fact that the tracer pattern exhibits fractal character-
istics is not entirely surprising, because the origin of
particle irreversibility is due to chaotic alveolar flow,
and deterministic chaos often manifests a fractal ge-
ometry (23, 32). On the other hand, it is important and
remarkable that the fingerlike protrusions (i.e., global
pattern) found in these simulations are strikingly sim-
ilar to those found in the longitudinal airway section of
our experiments performed with rat lungs (39). More-
over, our initial finding that D~ 1.2 obtained in finer
scale stretch-and-fold striations in the present numer-
ical study is close to D~ 1.1 found in those rat exper-
iments (unpublished observations) is encouraging. Al-
though further detailed analyses will be necessary to
determine the dependence of the fractal dimension (or
indeed if the pattern remains fractal) on model param-
eters, these similarities suggest that our numerical
simulation, although based on highly idealized as-
sumptions, does, in fact, capture the essential features
of the underlying mixing mechanism, namely, that
low-Reynolds number chaotic flow in the acinus deter-
mines particle transport in the lung.

Physiological origins of mixing. Our laboratory has
recently proposed two possible origins of “stretch-and-
fold” kinematics in the pulmonary acinus: first, that

than linearly with time. They also pointed out that the resulting
distribution of the tracer particles exhibited a fractal pattern (20).
Experimentally, whether variances are in fact additive or not in real
lungs, there do not appear to be any data on the growth of bolus
variance as a function of breath number. [This point should not be
confused with the observation that there is an essentially linear
relationship between bolus width and volume of penetration in the
bronchial tree (18)].
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induced by a small departure (asynchrony) from kine-
matically reversible motion of alveolar walls (16, 41),
and, second, that due to the presence of saddle points
associated with alveolar recirculation flows in the aci-
nar flow field (40). With respect to the first mechanism,
Miki et al. (24) reported the presence of a small but
consistent geometric hysteresis (i.e., temporal asyn-
chrony) in lung expansion during normal tidal ventila-
tion in live rabbits. By matching this degree of geomet-
ric hysteresis, we have generated physiologically
realistic asynchrony in physical models (41) and com-
putational models (16), which demonstrated that geo-
metrical hysteresis, even if small, can produce stretch-
and-fold patterns and, consequently, induce substantial
acinar flow irreversibility. In a related work, Smaldone
et al. (31), using gravitational sedimentation of aerosol
particles to estimate mean linear intercepts, showed
significant geometric hysteresis in excised lungs with
large-volume excursions from minimal volume and in-
terpreted their data in terms of respiratory unit re-
cruitment and derecruitment. Those studies, however,
being restricted to single-volume histories, did not ad-
dress the issue of mixing during cyclic ventilation and
so are not strictly comparable to the present work.
Finally, flow/volume hysteresis (different flow magni-
tudes at isovolume points on inspiration and expira-
tion) can lead to differences in the velocity profiles in
the central airways; this, in turn, can cause a differ-
ence in aerosol deposition between inspiration and
expiration (4).

In contrast to these studies, which focus primarily on
differing geometric features between inspiration and
expiration, in this paper we investigate the second
mechanism mentioned above. We believe that the pres-
ence of saddle points may be an equally fundamental
mixing mechanism responsible for convective mixing
in the acinus. Note that such saddle point singularities
do not exist in rigid wall models of acinar flow but,
through their association with alveolar recirculation,
are necessarily linked to the cyclic motion of the alve-
olar walls. To distinguish clearly this mechanism from
the former one (caused by geometric hysteresis), we
used only kinematically reversible wall motion in these
studies. The present paper extends our previous work
(40), which was restricted to a saddle point in a single
alveolar space, by considering the effect of multiple
saddle points in a multiply alveolated channel. In prac-
tice, we believe that both mechanisms, asynchrony and
saddle points, coexist in the pulmonary acinus, mutu-
ally enhancing each other in producing stretch-and-
fold mixing.

Significance and conclusions. It is well established
that exposure to environmental aerosol pollutants is
associated with health risks, ranging from mild to life
threatening (47). The exposure and pathophysiological
consequences are clearly linked by two independent
and separate causal pathways: the exposure-dose rela-
tionship (i.e., given an aerosol concentration in the
ambient air, what is the actual dose delivered to the
lung) and the dose-response relationship (i.e., for a
given deposited dose or burden, what is the biological

consequence). Despite the large literature on exposure
assessment methodologies as well as on the pathophys-
iological consequences of short- and long-term expo-
sures, there is much less known about the mechanisms
contributing to the first of these links, and much dep-
osition and mixing data are inconsistent with previous
theories of mixing deep in the lung. It is important,
therefore, to identify new potential mechanisms that
may dominate aerosol transport, even when boundary
motion is approximately reversible. We argue in this
paper that chaotic mixing is such a candidate. We have
shown, through realistic numerical simulation of the
low-Reynolds number alveolated duct flow (and by
comparison with experimental results in rat lungs;
unpublished observations), that the peculiar geometry
of the alveolated duct structure within the pulmonary
acinus and its cyclic motion during breathing can give
rise to 1) a chaotic type of mixing associated with the
presence of saddle points, 2) slow recirculatory flow
within the alveoli, and 3) stretching and folding of
stream surfaces. These, in turn, can significantly in-
crease mixing, especially laterally, and will also con-
tribute to an increasing ¢ (which increases faster than
linearly with breath number, an observation that is
inconsistent with any dispersal mechanism that can be
characterized by an effective axial diffusivity). We sug-
gest that chaotic mixing may be the dominant mecha-
nism of aerosol transport and deposition deep in the
lung.

This study was supported by National Heart, Lung, and Blood
Institute Grants HL-47428 and HL-54885 and, in part, by Environ-
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