Background: Both a functional promoter polymorphism in the gene encoding CD14 (C-260T) and exposure to endotoxin are believed to play key roles in modulating the immune response and expression of atopic disease.

Objective: We aimed to evaluate the role of the CD14 C-260T polymorphism in a population of African descent and to test for interaction between this genotype and house dust endotoxin (HDE) exposure on atopic phenotypes.

Methods: Asthmatic probands and their families were recruited as part of the Barbados Asthma Genetics Study. The C-260T polymorphism and two additional CD14 promoter markers (G-1461T, C-1721T) were genotyped. Endotoxin was measured in house dust samples.

Results: Using a Family-Based Association Test, the C-260T allele appeared to be protective against asthma ($\chi^2 = -2.444; P = .015$) and asthma severity ($\chi^2 = -2.615; P = .009$) under a recessive model. No significant associations were observed for the G-1461T and C-1721T markers both individually and in haplotypes. In a case-control analysis, the CD14 TT genotype was found to reduce risk of asthma compared with the CD14 CC/CT genotypes (odds ratio [OR], 0.26; 95% CI, 0.14-0.49) and was associated with lower asthma severity scores ($P < .002$). The TT genotype might protect against asthma for individuals with low HDE (OR, 0.09; 95% CI, 0.03-0.24), but may be a risk factor for individuals with high HDE (OR, 11.66; 95% CI, 1.03-131.7), suggesting a gene-environment interaction.

Conclusion: These data suggest that the CD14-260 polymorphism may play a role in controlling risk to atopic disease and underscore the importance of incorporating key environmental exposures into studies of genetic risk factors.

Key words: CD14, endotoxin, LPS, asthma, allergy, atopy, asthma severity, IgE, genetics, gene-environment interaction

Endotoxin or LPS is a potent proinflammatory agent capable of inducing severe airway inflammation via multiple mechanisms. Inhaled studies have shown that endotoxin can induce bronchoconstriction and airway hyperreactivity in subjects with and without asthma. It has been suggested that subjects with asthma and/or atopic individuals may be more sensitive to endotoxin compared with individuals without allergy.

CD14 is a pattern recognition receptor that plays a key role in the immune response to LPS. The CD14 gene has received significant attention as a candidate gene for allergic disease as well as a modifier of innate host defense mechanisms. Potential downstream effects of variants in the CD14 gene (as well as other genes involved in this pathway) are substantial and include controlling release of inflammatory cytokines and the upregulation of accessory molecules, features that are both critical in directing the adaptive immune response. In 1999, Baldini et al identified a single nucleotide polymorphism (SNP) involving a substitution of T>C at position -159 upstream from the CD14 transcription start site (later determined to be at position -260). The variant T allele was positively associated with increased levels of circulating soluble CD14 (sCD14) and was negatively associated with total serum IgE (tIgE). Since that time, several groups have examined the relationship between this CD14-260 SNP and allergic disease, but none have tested this association in populations of African descent. Limited work has been published on the relationship of CD14 promoter polymorphisms other than the C-260T variant and asthma/allergic disease, but no significant associations have been identified. Finally, it has been hypothesized that the effects of variants in the CD14 gene on clinical phenotypes may be modified by environmental endotoxin exposure, yet joint effects of endotoxin exposure and CD14-260 genotype on risk of asthma and its clinical severity have not been considered. The aim of this study was to test for an interactive effect of the CD14-260 genotype...
with current house dust endotoxin (HDE) exposure on asthma severity in a family study of genetics in Barbados. Two additional variants (C-1461T, A-1721G) with reasonable frequency in populations of African descent were included in this study to investigate potential linkage disequilibrium and to provide additional coverage of markers for tests of association in the promoter region.

METHODS

Study population

The population of Barbados is primarily of African descent with approximately 25% European admixture, similar to that observed in African Americans. Families were recruited in Barbados as a part of an ongoing asthma genetics study initiated in 1993. Briefly, asthmatic probands were recruited from all regions of the island, including 6 polyclinics, 2 private clinics, and the Accident and Emergency Department of Queen Elizabeth Hospital. Patients with a positive family history of asthma or 1 or more siblings with asthma were referred by physicians cooperating with on-site study investigators at the University of the West Indies. First-degree relatives (eg, nuclear families) were recruited and extended whenever possible. Informed consent was obtained from all subjects per a protocol approved by the Johns Hopkins Medical Institutions’ Joint Committee on Clinical Investigations and the Ministry of Health in Barbados. From the initial enrollment, and of those with **CD14** genotype data (n = 747), total IgE levels were available for 93% of subjects (n = 697). Extended phenotype data (skin test sensitization and spirometry) were available on a limited subset of the study population (n = 287). For this endotoxin study, asthmatic probands and their families were recontacted to assess current asthma severity and to collect samples of house dust. From a total of 157 eligible independent nuclear families, 122 were recontacted, whereas 35 were either unreachable or declined to participate. Asthma severity questionnaires (ASQs) were collected from these 122 nuclear families including 254 individuals (122 probands, 101 siblings, 18 mothers, 13 fathers). Of the 122 recontacted nuclear families, house dust samples and endotoxin data were available on 92 (75.4%) independent households.

Genotype data were available for 747 individuals from 125 pedigrees (327 nuclear families). The Genetic Analysis System program version 2.0 (http://users.ox.ac.uk/~ayoung/gas.html) was used to detect mendelian inconsistencies. When inconsistencies could not be resolved, the family was excluded; however, this resulted in excluding only 1 pedigree.

Clinical phenotyping

The evaluation protocol for asthma included (1) administration of a standardized and validated Respiratory Health Questionnaire and (2) administration of an ASQ, if appropriate. Subjects were also skin tested for a panel of relevant allergens, and serum was collected for total and specific IgE measurements. The operational definition of current asthma included (1) a documented history of asthma using the Respiratory Health Questionnaire, which includes questions about respiratory symptoms (shortness of breath, cough, wheeze, chest tightness) and a history of physician-diagnosed asthma (past/current); and (2) confirmation of asthma by an interview with a primary diagnostician in Barbados.

Asthma severity. Asthma severity was measured by using an ASQ developed by Togias et al and modified for this Barbados population (Barnes et al, in preparation). The ASQ assesses asthma severity on the basis of symptoms in the past year, broken down into 3 relevant seasons in Barbados (dry, summer, rainy). The number of emergency department visits, hospitalizations and intubations as well as the number of oral steroid courses during the past year and the average daily number of **β**-agonist inhalations was also recorded. This instrument records any impairment in physical activities and daily routine responsibilities in a quantifiable manner, with each answer scored on a validated scale. The total asthma severity score obtained can be used as a continuous variable, or subjects can be categorized into 5 severity groups; mild, mild to moderate, moderate, severe. Moderate to severe, and severe.

Routine spirometry. Spirometry was performed according to American Thoracic Society guidelines by using a KOKO (Pulmonary Data Services, Inc, Louisville, Colo) pneumotach connected to a laptop computer. Measures included FEV1, forced vital capacity (FVC), FEV1/FVC, and maximum midexpiratory flow, or the forced expiratory flow at 25% to 75% of forced vital capacity. Values were expressed as percent predicted by using the formula published by Goldman and Becklake for FVC, derived from the data of others for FEV1, and from the values published by Leuallen and Fowler for maximum midexpiratory flow. Only FEV1 and FVC were used here.

Laboratory methods

Serum CD14 levels. Serum sCD14 levels were measured by using a commercially available ELISA kit supplied by Biosource (Europe, South America). The sCD14–enzyme amplified sensitivity immunoassay is a solid-phase enzyme amplified sensitivity immunoassay performed on a microtiter plate on the basis of the oligoclonal system in which several mAbs directed against distinct epitopes of sCD14 are used. The assay was performed as recommended by the manufacturer on human serum diluted 1/101 with diluent. The concentration of each sample (unknown) is determined by extrapolation from a standard curve estimated from a panel of standards of known concentrations.

Serum tIgE measurements. IgE concentrations were measured as previously described using the chemilumimimetric Magic Lite immunoassay (ALK, Copenhagen, Denmark; CIBA-Coming, Medfield, Mass). All measurements were repeated in duplicate in an
independent assay, and any pair of values differing by >10% was retested until the coefficient of variation was ≤15%. Values were age- and sex-adjusted. Because of skewness, total IgE levels were log-transformed.

SNP genotyping. Genomic DNA was extracted from peripheral blood samples obtained by venipuncture using the QiAmp Blood midikit (Qiagen, Inc, Valencia, Calif). Genotyping for the CD14-260 variant (rs2569190) was performed through PCR amplification and restriction enzyme digestion as previously described.10 Known samples were included as positive controls. Two additional SNPs in the CD14 promoter region (rs3138078, G-1461T; rs2915863, C-1721T) using the TaqManR probe-based, 5′ nuclease assay with minor groove binder chemistry were genotyped. Genotyping of both SNPs was performed by using Assays-by-Design (Applied Biosystems, Foster City, Calif) as follows: -300 bp of flanking sequence on both sides of the SNPs were imported into the File Builder AB software (Applied Biosystems) and the probes and primers were synthesized by Applied Biosystems.

Environmental assessment

Dust sampling. Endotoxin levels were measured in samples of house dust by using a conventional approach for allergen collection as previously described.29 This is the most common and feasible method for determining endotoxin levels in household environments and is highly reproducible.30,31 Living room composite dust samples were obtained from the households of 92 independent asthmatic probands and their families.

Measurement of HDE levels. Endotoxin content from the living room composite dust sample was measured by using a kinetic limulus amebocyte lysate assay as previously described.32 Endotoxin results were expressed as endotoxin units (EU) per square meter of the area sampled (load). All observed endotoxin levels were within the limits of detection of this assay. High endotoxin exposure was defined as ≥75th percentile (44,000 EU/m²), and low HDE was defined as <44,000 EU/m². This cutoff was chosen based on a natural break in the distribution as well as published levels defining high exposure in farming communities.33

Statistical analysis

Continuous variables were tested for normality by using the Shapiro-Wilk test. When variables were not normally distributed or when numbers of participants were small, nonparametric analyses were performed (eg, Wilcoxon rank-sum test). For differences in proportions, the Fisher exact test was used.

Both departures from Hardy-Weinberg equilibrium proportions at each locus were tested among the founders to compare observed genotype frequencies, and pairwise linkage disequilibrium (LD) was measured by using STATA 8.2 (StataCorp, College Station, Tex).34 The Family-Based Association Test (FBAT)35,36 was used to test for linkage around the marker.37 When analyzing sCD14, this empirical statistic regardless of pedigree structure or previous evidence of linkage around the marker.35 When analyzing sCD14, this empirical statistic was used to test for linkage in the presence of association (disequilibrium).35

To confirm the results of the family-based analyses as well as to test for gene-environment interaction, a case-control design was used. For these analyses, cases were defined as independent asthmatic probands with available endotoxin data (n = 221). Controls (n = 230) consisted primarily of siblings without asthma. Analyses were performed by using multivariate logistic and linear regression models as implemented in the STATA software package (version 8.0, 2003, #2798; StataCorp). The cluster function of STATA was used to allow for dependence between subjects within the same family.

RESULTS

Subject characteristics and genotype data

Baseline characteristics of the study population by asthma status (and ignoring family structure) are summarized in Table I. There was no sex difference between subjects with and without asthma; however, subjects without asthma were, on average, twice as old as subjects with asthma. Given that this sample consists of families recruited through children with asthma and their parents, such an age difference is expected. Also as expected, subjects with asthma had a significantly higher severity score than did subjects without asthma; however, some subjects without asthma (N = 6) registered a score >0. A third (33.3%) of subjects without asthma were atopic and/or reported allergic rhinitis. Total IgE levels (available for 93.3% of individuals with DNA) differed significantly between subjects with and without asthma (P < .0001). More extensive phenotype data (skin test sensitization and pulmonary function testing) were available only on a subset (primarily asthma probands and their siblings; n = 287). These associated phenotypes, including spirometry measurements, also differed significantly between subjects with and without asthma (P = .0001–.0064; Table I). FVC % predicted was relatively low among subjects without asthma, but this was not surprising given that the families were selected via an asthmatic proband. There were no meaningful differences in the distribution of CD14 genotypes or in log-transformed IgE levels for the subset of individuals with extensive phenotyping versus those without these data. There was no statistically significant difference in mean sCD14 levels or HDE exposure between subjects with and without asthma. Smoking, as a variable, was not included as a confounder in this study because the prevalence of smoking is extremely low in Barbados (<10%), especially among families of patients with asthma.

HDE levels

House dust endotoxin levels for living room composite samples were available for 498 people from 122 households. The geometric mean of endotoxin load was 23,144 EU/m² (95% CI, 20,832-25,713) with a range of 236 to 3,773,750 EU/m² (data not shown). To determine whether
these HDE levels changed over time, dust sampling was repeated an average of 15.8 months after initial sampling for 12 households. No statistically significant difference in endotoxin load (EU/m²) between these repeated measurements was found (Wilcoxon signed-rank test resulted in \(P = .114 \); data not shown), indicating HDE concentrations are stable over time in this population. High HDE exposure (living room composite \(/ C_{21} \) 44,000 EU/m²) was not associated \((P > .05 \)) with increased risk of asthma, higher \(tIgE \), or higher asthma severity scores in this population (data not shown). When expressing endotoxin levels as EU per milligram of dust, similar results were obtained.

Association of the CD14 polymorphisms with asthma-associated outcomes

Allele frequencies for the CD14(-260) SNP were 68.1% and 31.9% for the C and T alleles, respectively. Genotype frequencies agreed with expectations under Hardy-Weinberg equilibrium. Overall, the distribution of CD14-260 genotypes did not differ between subjects with and without asthma \((P = .446 \)); however, the TT genotype was nearly twice as common among subjects without asthma, suggesting a protective effect (Table I, \(P = .0185 \)).

Family-Based Association Test results testing for linkage and association between the T allele and asthma and atopy-associated outcomes are presented in Table II. Among these phenotypes, the strongest evidence for an association with CD14-260 was observed under a recessive model (data not shown for other models). We observed a statistically significant association between the T allele and lower asthma severity scores \((P = .0089 \)). There was also evidence for association of asthma with this polymorphism \((P = .0145 \)). Fewer TT homozygotes among subjects with asthma were observed than expected under the null hypothesis, suggesting that the C allele may be associated with a higher risk of asthma. None of the individual atopy phenotypes showed significant association individually with the CD14-260T variant \((P > .05 \)). We also found no statistically significant association between the T allele and sCD14 levels. However, these families did suggest that the TT genotype might be protective for all other asthma-associated outcomes.

Two additional SNPs in the CD14 promoter region were typed in the study population: G-1461T and C-1721T, with the former positioned 1201 bp upstream of CD14-260 and the latter 258 bp further upstream. Allele frequencies for these SNPs in the full Barbados population were as follows: C-1721T results were 20.6% and 79.3%, respectively, and G-1461T results were 18.4% and 81.6%, respectively, which is consistent with other reports of frequencies of these variants in a population of African descent (http://innateimmunity.net/IIPGA/IIPGA2/PGAs/InnateImmunity/CD14; Table I). Genotypes in the population were consistent with Hardy-Weinberg Equilibrium proportions (at \(\alpha = 0.01 \)). The Lewontin D\(^{\alpha} \) was found to be 0.88 between C-1721T and G-1461T and 0.93 and 0.89 for pairwise comparisons between G-1461T, and CD14-260 and C-1721T, respectively, reflecting high pairwise linkage disequilibrium among these three markers. Single marker analyses using

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N</th>
<th>Subjects with asthma (N = 293)</th>
<th>Subjects without asthma (N = 454)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current age, y, mean (SD)</td>
<td>747</td>
<td>24.1 (13.0)</td>
<td>40.5 (15.4)</td>
<td><.0001</td>
</tr>
<tr>
<td>Male, %</td>
<td>747</td>
<td>51.2%</td>
<td>47.9%</td>
<td>.3780</td>
</tr>
<tr>
<td>CD14-260 genotype, %</td>
<td>747</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>336</td>
<td>47.1%</td>
<td>43.5%</td>
<td>.3341</td>
</tr>
<tr>
<td>CT</td>
<td>343</td>
<td>46.8%</td>
<td>45.3%</td>
<td>.6879</td>
</tr>
<tr>
<td>TT</td>
<td>68</td>
<td>6.1%</td>
<td>11.2%</td>
<td>.0185</td>
</tr>
<tr>
<td>CD14-1461 genotype, %</td>
<td>692</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>26</td>
<td>3.41%</td>
<td>3.52%</td>
<td>.9361</td>
</tr>
<tr>
<td>GT</td>
<td>203</td>
<td>27.30%</td>
<td>27.09%</td>
<td>.9498</td>
</tr>
<tr>
<td>TT</td>
<td>463</td>
<td>61.77%</td>
<td>62.11%</td>
<td>.9255</td>
</tr>
<tr>
<td>CD14-1721 genotype, %</td>
<td>729</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>25</td>
<td>2.05%</td>
<td>4.19%</td>
<td>.1125</td>
</tr>
<tr>
<td>CT</td>
<td>250</td>
<td>29.01%</td>
<td>36.34%</td>
<td>.0382</td>
</tr>
<tr>
<td>TT</td>
<td>454</td>
<td>66.21%</td>
<td>57.27%</td>
<td>.0145</td>
</tr>
<tr>
<td>Serum total (tIgE), ng/mL, geometric mean (95% CI)</td>
<td>696</td>
<td>1031.1 (871.9-1219.4)</td>
<td>444.65 (383.3-515.8)</td>
<td><.0001</td>
</tr>
<tr>
<td>Skin test positivity ((\geq 1) positive skin prick test), %</td>
<td>287</td>
<td>59.8%</td>
<td>35.6%</td>
<td><.0001</td>
</tr>
<tr>
<td>Number of positive skin tests, median (range)</td>
<td>454</td>
<td>1.0 (0-6)</td>
<td>0.0 (0-4)</td>
<td><.0001</td>
</tr>
<tr>
<td>(FEV_1), % predicted, mean (SD)</td>
<td>287</td>
<td>80.7 (14.7)</td>
<td>86.8 (20.6)</td>
<td>.0064</td>
</tr>
<tr>
<td>(FVC), % predicted, mean (SD)</td>
<td>287</td>
<td>77.1 (16.9)</td>
<td>70.7 (13.8)</td>
<td>.0004</td>
</tr>
<tr>
<td>Asthma Severity Score, median (range)</td>
<td>254</td>
<td>6.0 (0-62)</td>
<td>0.0 (0-21)</td>
<td>.0141</td>
</tr>
<tr>
<td>sCD14, ng/uL, geometric mean (95% CI)</td>
<td>174</td>
<td>5386.6 (4707.8-6163.3)</td>
<td>4974.7 (3104.8-7970.7)</td>
<td>.2256</td>
</tr>
<tr>
<td>High HDE load, EU/m²</td>
<td>498</td>
<td>25.5%</td>
<td>24.02%</td>
<td>.4380</td>
</tr>
</tbody>
</table>

*Adjusted for age and sex, centered around the predicted mean for 20-year-old male patients.
FBAT under a recessive model indicated no significant associations \((P > .05) \) for any of the phenotypes for either marker (data not shown). In a haplotype analysis in which all 3 CD14 markers (C-1721T, G-1461T, C-260T) were included, the 2-marker haplotype (-1461T/-260T) was marginally significant \((P = .0642) \); however, the addition of the third marker (C-1721T) eliminated this apparent effect, lending supporting evidence for a protective role of the CD14-260T allele.

These family data were also evaluated with a case-control design to determine whether a more traditional epidemiological approach would support these findings. Asthma, asthma severity, and total IgE were evaluated as outcomes. The TT genotype was associated with a greater than 4-fold reduction in risk of asthma compared with the CC/CT genotypes (odds ratio [OR], 0.26; 95% CI, 0.14-0.49; data not shown). For asthma severity score, individuals with the TT genotype showed significantly lower levels compared with those with CT or CC genotypes \((P = .0002) \).

Interactive effect of current endotoxin exposure and CD14(-260)C>T

Table III shows age-adjusted ORs for the association between asthma and CD14-260 genotype, stratified by high versus low HDE load. Among individuals with low HDE exposure, the TT genotype appeared protective for asthma \((OR, 0.09; 95\% CI, 0.03-0.27) \). However, TT individuals with high HDE exposure were <1 (95% CI, 1.03-131.7) times more likely to have asthma than individuals with the CC genotype, although this result is based on a small sample of TTs in the population. Table IV shows the association between CD14-260 genotypes and both tIgE and asthma severity score by high versus low HDE load. TT homozygotes had, on average, lower tIgE regardless of HDE exposure; however, the effect was stronger in the low exposure category. We also observed a strong association between TT genotype and lower asthma severity scores, but only when HDE exposure was also low \((P < .001) \). For individuals with low HDE exposure, 82.5% of TT homozygotes \((n = 33) \) had an asthma severity score of zero.

We hypothesized that the association between the CD14-260 SNP and asthma outcomes would be further modified by atopic sensitization; however, we could not assess this fully because of limited numbers of patients with asthma with a negative skin test result and the rarity of the TT genotype. There was some evidence from our limited analyses (data not shown) that the protective effect afforded by the TT genotype in individuals with low HDE exposure may only exist among subjects with a negative skin prick test result; however, the number of subjects in each category was quite small.

DISCUSSION

Individuals of African descent are at increased risk for asthma and atopic disease compared with European and European-American populations, and they have a more severe disease, even after controlling for factors such as access to medical care and socioeconomic status. Differences in genetic risk factors may contribute to these health disparities. We genotyped 747 individuals from 125 pedigrees \((327 \) nuclear families) for the CD14-260 polymorphism and found the frequency of the -260T allele was markedly lower in this Afro-Caribbean population, even after considering the selection bias for asthma in our study. The TT genotype was very rare in this population, with only 6.1% of subjects with asthma and 11.2% of subjects without asthma homozygous for the -260T allele. In contrast, the 2 additional promoter variants studied \((G-1461T and C-1721T) \), which were in strong LD with the -260T variant \((D' = 0.88-0.93) \), were very common in this population \((83\% and 77\%, respectively) \), although no associations with asthma or tIgE were detected.

Because this study population was enriched for asthma, we hypothesized that the T allele (and TT genotype, in particular) would be less frequent if, indeed, the C allele were associated with asthma. However, the relative rarity of the TT genotype in our study sample compared with previous studies of subjects with asthma \(^{10-12} \) remains compelling.

This study in a population of African descent provides additional evidence for an association between the CD14-260 TT genotype and lower tIgE and is the first report of an inverse association between the CD14-260 TT genotype and risk of asthma. In addition, the -260T allele appeared to be associated with decreased asthma severity. Koppelman et al \(^{11} \) provide the only other study that addressed this relationship by looking at the effect of CD14-260 on basic spirometry and lung challenge parameters; however, none of their associations was statistically significant. It should be noted that objective pulmonary measures show short-term phenotypic variability that could easily obscure modest effects of genotype. In contrast, we hypothesized that there may be an association between CD14-260 and a more global measure of asthma severity. The lack of association for the traits tested and 2 additional promoter variants in strong LD with C-260T suggest that the functional -260T variant may indeed be the causal variant in asthma and/or allergic disease.

Tests of association showing an inverse association between CD14-260 TT genotype and asthma and asthma

TABLE II. FBAT for the CD14(-260T) variant and asthma-associated phenotypes under a recessive model

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>z Score</th>
<th>FBAT P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthma (yes/no)</td>
<td>-2.444</td>
<td>.0145</td>
</tr>
<tr>
<td>Asthma severity</td>
<td>-2.615</td>
<td>.0089</td>
</tr>
<tr>
<td>tIgE (ng/mL)*</td>
<td>-0.848</td>
<td>.3966</td>
</tr>
<tr>
<td>Positive SPT (yes/no)</td>
<td>-1.021</td>
<td>.3072</td>
</tr>
<tr>
<td>Number of positive SPT</td>
<td>-1.665</td>
<td>.0958</td>
</tr>
<tr>
<td>sCD14 (ng/mL)</td>
<td>-1.606</td>
<td>.1084</td>
</tr>
</tbody>
</table>

*SPT, Skin prick test. *Adjusted for age and sex.
severity (both in family-based and case-control analyses), as well as tlgE (in case-control analyses), suggest that factors enhancing a T\(_{H1}\) response may decrease T\(_{H2}\)-type inflammation and expression of allergic disease. We further investigated the role of this CD14-260 SNP in allergic disease by considering the joint effects of house dust endotoxin (HDE or LPS) exposure and genotype on asthma, total IgE, and asthma severity. In our preliminary tests for gene-environment interaction, we observed an interesting trend for all 3 phenotypes. Specifically, at low HDE exposure, the CD14-260 TT genotype appeared to be protective compared with the CC and CT genotypes, but at high HDE exposure, any protective effect of TT genotype disappeared, and the risk factor for asthma itself seemed to be greater. It has been suggested that enhanced ability to bind endotoxin (vis-à-vis increased transcription of CD14) may protect against T\(_{H2}\)-type inflammation by upregulating innate immune mechanisms (and activation of T\(_{H1}\)-type pathways). In other words, TT homozygotes may mount a response at lower levels of endotoxin exposure than CC or CT individuals, affording some protective effect. However, there appears to be a threshold level at which the TT genotype may actually be associated with increased risk and severity of disease. The threshold at which the TT genotype becomes a risk factor for asthma and allergic disease remains uncertain and may vary between populations. Nevertheless, this concept is consistent with studies in which high sCD14 has been associated with mortality caused by sepsis and the CD14-260T allele, specifically, has been shown to be associated with both septic shock and death caused by sepsis. In addition, we observed further modification of the association between the CD14-260 SNP and asthma outcomes by allergic sensitization; however, the rarity of the TT genotype precluded making a strong inference from our findings.

Because of the relative rarity of the T allele (and TT genotype) in this population of African descent, the results of our study must be interpreted with caution. Small sample sizes, particularly when stratified by HDE exposure, limit the precision of the tests. Consideration of HDE levels in this study poses additional limitations. Because the study is cross-sectional, the temporal relationship between observed exposure and disease remains uncertain. However, in this population, individuals can remain in the same dwelling for years, and our data suggest that HDE levels are relatively constant over time in this tropical environment. The absence of additional environmental data is another limitation of our study. If endotoxin concentrations in house dust were correlated with other constituents of house dust (eg, dust mite levels or peptidoglycan), then there could be confounding between HDE exposure and asthma outcomes. However, because CD14 is the LPS receptor and the literature strongly supports a role for endotoxin exposure in the pathogenesis of asthma and allergic disease, we contend that the association with endotoxin per se is reasonable.

In conclusion, our data support a role for CD14-260 as an intrinsic immune modifying locus whose effects both change and are changed by the dynamic state of the T\(_{H1}\)-T\(_{H2}\) balance. Important cofactors such as variation in other modifying/susceptibility loci, environmental exposures, disease status, and presence of comorbid conditions contribute to a dynamic state in which the effects of CD14 may vary both quantitatively and qualitatively. Additional studies will need to focus on well defined populations with well characterized phenotypes and comprehensive environmental assessment to allow better refinement of our understanding of how genes such as CD14 influence risk to allergic diseases. Additional key environmental cofactors will be needed to confirm the findings presented here.

We thank the families in Barbados for their generous participation in this study; Dr Raana Naidu, Dr Kathryn Held, Dr Rasika Mathias, Amy Wechter, Cheryl Rollins, Pissamaal Maul, Trevor Maul, and Bernadette Gray for their contributions in the field; Dr Malcolm Howitt and the Polyclinic and Queen Elizabeth Hospital Accident & Emergency Department physicians in Barbados for their efforts and their continued support; and Drs Steve Olenchock and Michael Whitmer for endotoxin analysis. We are grateful to William Shao and Pat Oldewurtel for technical assistance.

TABLE III. Age-adjusted ORs and 95% CIs for CD14(C-260T) genotype and asthma, stratified by high versus low HDE load*

<table>
<thead>
<tr>
<th>CD14-159 genotype</th>
<th>Low HDE (N = 332)</th>
<th>High HDE (N = 111)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC (N = 182)</td>
<td>1.0 (N = 133)</td>
<td>1.0 (N = 49)</td>
</tr>
<tr>
<td>CT (N = 205)</td>
<td>0.84 (0.39-1.82)</td>
<td>0.77 (0.27-2.23)</td>
</tr>
<tr>
<td>TT (N = 56)</td>
<td>0.09 (0.03-0.27)</td>
<td>11.66 (1.03-31.7)</td>
</tr>
</tbody>
</table>

*Defined according to a living room composite endotoxin load ≥(high) or < (low) 44,000 EU/m².

TABLE IV. Mean total IgE and Asthma Severity Score stratified by CD14-260 genotype and HDE exposure level

<table>
<thead>
<tr>
<th></th>
<th>Low HDE</th>
<th></th>
<th>High HDE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TT</td>
<td>CT</td>
<td>CC</td>
<td>TT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Value*</td>
<td></td>
<td>Value*</td>
</tr>
<tr>
<td>TT</td>
<td>436 (n = 41)</td>
<td>638 (n = 143)</td>
<td>733 (n = 129)</td>
<td>0.059</td>
</tr>
<tr>
<td>CT</td>
<td>40 (n = 40)</td>
<td>11.90 (n = 68)</td>
<td>10.89 (n = 64)</td>
<td><.001</td>
</tr>
<tr>
<td>CC</td>
<td>2.40 (n = 40)</td>
<td>1.0 (n = 129)</td>
<td>11.66 (n = 49)</td>
<td>11.66 (1.03-31.7) (N = 7)</td>
</tr>
</tbody>
</table>
REFERENCES

