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Abstract

ART-2a and a density based cluster method, density based spatial clustering of application with noise (DBSCAN), have been used for classification
of the single particle mass spectra measured at New York City. Using too large of a vigilance factor in ART-2a leads to many similar clusters with
overlap, and thus a low vigilance factor was used in this study. The DBSCAN method can identify clusters with complex shapes and various sizes,
and representative spectra are chosen to identify different particle types within each cluster. The cluster structure of the single particle mass spectra
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ere examined by DBSCAN. Both methods found that the major clusters were sea salt and anthropogenic combustion emissions. T
n sulfate, potassium and OC particles were found by DBSCAN and a large cluster was formed, while ART-2a broke it into several sm
ithout finding this continuum. A detailed discussion of the cluster analysis results including representative mass spectra, size distri

emporal behavior will be provided.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Airborne particles play an important role in influencing
egional visibility and global climate[1]. High particulate matter
PM) levels have also been found to be associated with increased
orbidity and mortality[2,3]. Measurement of atmospheric PM,

ncluding the size distribution and chemical composition of par-
icles, is fundamental for further understanding these issues.

Many instruments have been used to measure the size dis-
ribution and bulk phase chemical composition, and in the past
everal years, real time single particle mass spectrometry has
eveloped rapidly[4]. These kinds of instruments measure the
ize and composition of single particles simultaneously and have
rovided insight into particle sources, chemical transformations
etween particles and gases and distributions among or within
articles. Different single particle mass spectrometry techniques
ave been developed, including particle analysis by laser mass
pectrometry (PALMS), aerosol time-of-flight mass spectrom-

∗ Corresponding author. Tel.: +1 315 268 3861; fax: +1 315 268 4410.

etry (ATOFMS) and rapid single particle mass spectrom
(RSMS). These instruments were deployed and compar
the Atlanta supersite as well as an aerosol mass spectro
(AMS), which measures ensembles of particles instead o
gle particles[5].

The single particle measurement generates huge amou
data. In a one month field study, >200,000 mass spectra c
obtained. These data cannot be analyzed manually and c
analysis methods have been applied, including ART-2a
ral network[6,7] and hierarchical regression tree analysis[8].
Murphy et al.[8] compared ART-2a and regression tree.
conclusion is that ART-2a has the advantage of online ana
and less computing time, and that regression tree has the a
tages of convergence and generating clusters with less o
than ART-2a.

Another cluster method, density based spatial clusterin
application with noise (DBSCAN) has recently been introdu
into the chemistry field[9,10]. Since this method can ident
clusters with arbitrary shapes and sizes, it produces clusters
out overlap and the continua between different types of par
caused by internal mixing may be found. For separating ove
E-mail address: hopkepk@clarkson.edu (P.K. Hopke). ping clusters, partition methods can be used inside the DBSCAN
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clusters. It was demonstrated that DBSCAN could find clusters
with complex and even concave shapes while a partition method
such asK-means failed[9,10].

In this study, the single particle mass spectra measured in
Flushing, New York City, are clustered with both ART-2a and
DBSCAN. These two methods will be compared.

2. Experiment

During the PM2.5 Technology Assessment and Characteriza-
tion Study (PMTACS-NY) winter intensive, single mass spectra
were measured by an ATOFMS (TSI 3800) at the Queens Col-
lege site in Flushing NY (latitude: 40.74, longitude: 73.82), Jan-
uary 10–12, 14 and 15, 2004. The ATOFMS has been described
in a number of previous publications[11–13]and only a brief
description will be given here.

Air is drawn into the ATOFMS instrument and a narrow par-
ticle beam is formed through a converging nozzle followed by
skimmers. The particle then enters a sizing stage. The time-of-
flight is obtained when the particle crosses two laser beams and
can be converted to size through a size calibration file. A pulsed
Nd:YAG laser is triggered by detection of particle velocity and
the particle is then ablated and ionized. The ions produced by
the ablation are analyzed by time-of-flight mass spectrometry.
For each particle, positive and negative ion mass spectra are
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3. Data analysis

First, the positive and negative ion mass spectra were nor-
malized separately; the missing negative spectra were taken
as all zeros. Next, the positive and negative spectrum from
each particle were combined into one vector and normal-
ized. For all of the algorithms used in this study, the dis-
tance is defined by the dot product of two normalized spectra
vectors.

3.1. Clustering by ART-2a

In ART-2a, a sample spectrum is chosen randomly and the
inner products of the spectrum with the weight vectors are
computed. The weight vector with the highest inner product is
updated if this product exceeds a criterion, the vigilance factor
(VF) and the sample spectrum is assigned to this weight vec-
tor. Otherwise, the sample spectrum is added as a new weight
vector. The whole process is repeated until the convergence crite-
rion is reached. The ART-2a algorithm was described elsewhere
[14,15].

3.2. Density based clustering

A density based cluster method, DBSCAN, was developed
by Ester et al.[16] and introduced into the chemistry field by
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ecorded at the same time.
A total of 59,989 single particle spectra were measure

TOFMS and 46,676 of them have both negative and pos
on signals. The time-of-flight for aerodynamic sizing was
ecorded for each particle. The ablation laser broke befo
n-site size calibration could be done, so a factory calibra
as used to convert the flight times to sizes. As a result, the
btained may have some errors and can only be used to co
articles measured in this study in a qualitative way. All of
ass spectra were converted to a list of peaks with in-h

oftware. The mass to charge ratio (m/z) range is from−350 to
50 Da. The measured particle number per hour is presen
ig. 1. The highest number/hour values were on the morni
anuary 12.

ig. 1. Temporal profile of total sampled particle number with 1 h resolu
hen there is no sampling, the particle number drops to zero.
n

s
re

e
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aszykowski et al.[9]. This method determines a cluster
nvestigating density, the number of objects in the neigh
ood space of the current object that are within a given ra
. If the density is greater than a criterion value, i.e. the num
f objectsk within the radiusε, each current object is thoug

o be a core object. Otherwise, the current object can be
border object or an outlier object if there is no core obje

he neighborhood defined by representative object thek andε

arameters representative object. Only two parameters,ε andk,
eed to be assigned for the DBSCAN algorithm. In this st

hey were chosen to be 0.9 and 20, respectively. These
arameters were decided empirically. When the dot produ

wo mass spectra is greater than 0.9, they can be thought
dentical[8]. Thus, this neighborhood is considered to be
ciently close. A value of 20 was suggested by Daszyko
t al. [9] for large data sets. Actually, the DBSCAN algorit

s not as sensitive to these parameters as ART-2a is to th
hen using largek values the clusters will “shrink” as com

ared to those obtained using smallk values, more outliers ma
e produced, and some large clusters may be broken into s
nes. When using lowerk values, more clusters may be co
ined. For clusters without connection and with similar s
nd densities, DBSCAN and other partition methods find s

ar clusters. The presence of continua are one of the difficu
f the partition methods since the partition methods sep

hem by hiding the continua. In DBSCAN, the continua
efined by theε and k values. Partition methods can be u

o find representative objects within a large cluster for b
nderstanding the different particle types (not clusters) and
rovides an understanding as to why there are continua for
articles.



L. Zhou et al. / Analytica Chimica Acta 555 (2006) 47–56 49

Table 1
Summary of the ART-2a classification results with various vigilance factors
ρmax; NT is the total number of classes; andN99 and N9 are the number of
classes explaining 99 and 90% of the total mass, respectively

ρmax 0.3 0.4 0.5 0.6
NT 100 165 303 750
N99 56 81 152 337
N9 26 34 61 121

For DBSCAN, the nature of the initiation process does not
influence the final results. The DBSCAN algorithm is deter-
ministic and there are no iteration and convergence problems.
For ART-2a, the initiation, in terms of the order in which the
objects are presented to the program, may have some effect
since convergence may be achieved at slightly different loca-
tions depending on the order in which the particles are ana-
lyzed.

The DBSCAN algorithm can be described as follows:

a. At the beginning all objects are flagged as unprocessed.
b. Randomly choose an unprocessed object as the current

object, mark it as processed. If the current object is a

core, create a new cluster and assign the current object
to it and go to ‘c’. If not, move to the next unprocessed
object. When all the objects are processed, terminate the
algorithm.

c. Find neighbors of the current object within the distanceε,
assign them to the cluster created in step ‘b’, mark as pro-
cessed, and transfer them to ‘seeds’. If all objects have been
processed, then continue to step ‘d’, otherwise return to step
‘b’.

d. Take each object in ‘seeds’ as the current object and perform
‘c’. When all objects are processed, go back to ‘b’.

Since some clusters found by DBSCAN may be very large
and the center of the cluster is not sufficient to represent all
the objects, a partition method likeK-means was suggested
as a post-processing method[10]. In this study, the Kennard
and Stone algorithm[10,17] is used to select a representative
object within each individual cluster found by DBSCAN. The
first representative is chosen as the object that is the nearest
to the mean of the current cluster. Subsequent representative
object are chosen as the most distant object from the previous
representative object. The distance of an object from previous

Table 2
Summary of the classification results whenρmax= 0.4

Class no. Major component of negative spectra Major com

1 NO3
−, NO2

− Na+

2 NO3
−, NO2

− Mg+

3 – Na+

4 (NO3)2
−, HCO3

− Mg+

5 HSO4
− K+ + OC

6 NO3
−, NO2

− K+

7 – K+ + OC
8 – K+

9 HSO4
− OC

1 C2H3

1
1 , NaH
1
1
1 OC
1
1 O+/A
1 K+

1
2
2
2
2
2
2 0.0062 1587
2
2
2
2
3
3
3
3
3

T

0 – Na+,
1 NO2

− Ca+

2 NO2
− Mg+

3 NO3
−, NO2

− –
4 – Si+

5 NO3
− K+ +

6 NO3
−, NO2

− Ca+

7 NO3
−, NO2

− CH3C
8 – Na+,
9 – Fe+

0 NO2
−, Cl− Mg+

1 PO4
−, H(NO2)2

− Na+

2 – Mn+

3 HSO4
−, NO2

− K+

4 – OC
5 HSO − EC
4

6 NO2
− C2H3

+/Al+

7 – CaOH+

8 – Al2
+

9 SO4
− OC

0 NO3
− OC

1 HSO4
− OC

2 PO3
− K+ + OC

3 HNO2
− –

4 PO4
− K+ + OC

hese classes account for 90% of the total mass.
ponent of positive spectra Volume fraction Number

0.3008 10949
0.1096 3689
0.0663 2263
0.0354 1035
0.0285 4479
0.0284 2474
0.0269 3816
0.0246 1542
0.0246 3244

+/Al+ 0.0234 278
0.0229 991

2O+ 0.0215 523
0.0174 923
0.0145 170
0.014 1325
0.0135 867

lO+ 0.0125 1049
0.0123 561
0.0107 617
0.0097 179
0.0097 277
0.0079 158
0.0078 1048
0.0068 1578
0.0061 168
0.0059 153
0.0056 75
0.0056 1320
0.0052 851
0.0051 247
0.0051 205
0.0049 99
0.0048 983
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representative object is defined as the greatest dot product of
the object with all representative object and the distance thus
defined will ensure the object found is the farthest from all the
previous representative object. When this dot product is greater
than 0.7, the selection of representative object stops. Thus, all
the members in one cluster can be assigned to a representa-
tive with a dot product over 0.7. After this post-processing
step, the objects within each cluster are assigned to the rep-
resentative that yields the largest dot product. The number of
representative object is also a measure of cluster size. More rep-
resentative object indicates large cluster representative object
sizes.

All the outliers will be assigned to their nearest cluster if
the distance between an outlier and any cluster member is over
0.7. These outliers are called the “cloud” of the cluster they are
assigned to. For a cluster, the density is usually high at the center
but low at the border. It is possible that the outlier near a cluster
still belong but is not identified since a certain density criterion
is used. The “cloud” is only for reference and was not used to
find representative object.

Because of the complexity of the data structure and the algo-
rithms, as well as the large amount of data, a special class was
constructed to store all the original spectra, variables and func-
tions used in the cluster analysis, and the object oriented (OO)
property of the C++ language was utilized.
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Fig. 2. Mass spectra of Classes 1–8 by ART-2a.

kinds of sea salt particles experience during transport are simi-
lar.

Fig. 3 indicates that most of the sea salt particles (Classes
1–4) have sizes around 1�m. These four classes account for
half of the total volume. These sea salt particles are smaller than
those reported elsewhere[6,13], and this discrepancy may be
due to an inappropriate size calibration.

Class 3 has no negative ions like sulfate and nitrate, and may
represent sea salt particles that have not been processed by the
atmosphere. This lack of processing may explain the larger num-
bers of smaller particles inFig. 3as compared to the processed
sea salt classes. However, it is also possible that low ablation
efficiencies for sulfate and nitrate in the smaller particle sizes
are responsible for the lack of negative ions.

Potassium plus organic fragments is found in Classes 5 and
7, and also several minor classes as indicated inTable 2. These
classes are associated with emissions from biomass burning
and Fig. 3 indicates that most of the particles in Classes 5
and 7 are smaller than 0.5�m. Class 6 contains potassium
but no organic fragments. It may also be from biomass burn-
ing.

Although the ion signal peaks at 40 Da for class 8 inFig. 2,
suggesting Ca+, it is likely that this is a mis-calibrated K+ peak
considering that the size and temporal distribution of class 8
. Results and discussion

.1. ART-2a

Table 1shows the number of classes with different vigila
actors. One of the difficulties in applying ART-2a is that wh
sing large VFs like 0.7, too many clusters were found and
re significant overlaps among the clusters. When using a
F of 0.4, the clusters have much less overlap, but the sp

nside each cluster may be dissimilar and the weight vect
ach cluster may not be representative. This problem see
e caused by large cluster sizes. Pastor et al.[13] found similar
lusters even with VF = 0.5 and combined those similar clu
anually. InTable 2, using a VF of 0.4, the results of the

lasses which account for 90% of the total mass (<2.5�m) are
ummarized.

The major particle classes include sodium-contain
agnesium-containing, potassium + OC, calcium-conta
nd OC. The sodium-containing classes are thought to be
ea salt and previous cluster analysis of ATOFMS measure
lso found these classes[6]. Them/z ratios of−62 (NO3

−) and
46 (NO2

−) are markers of nitrate[7] and the largest class
re sodium nitrate and magnesium nitrate. NaNO3 is formed

rom sea salt through reaction with HNO3 resulting in the deple
ion of chloride. The reaction between sea salts and HNO3 was
reviously observed using the ATOFMS technique[18]. This
lass explains the largest particle number and volume of a
lasses.

Magnesium particles are also thought to be from sea
s shown in Fig. 2, Class 2 has nearly the same nega
pectrum as Class 1, suggesting that the reactions thes
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Fig. 3. Size distributions of Classes 1–8 by ART-2a.

is similar to class 6 and that these two ions are separated by
only onem/z unit. In addition, the small peak at 42 Da (mis-
calibrated 41 Da) indicates the isotope of K rather than Ca; the
Ca isotope should be at 44 Da. Mis-calibrated spectra have also
been reported by Pastor el al.[13].

In Fig. 4, it can be found that the temporal profile of Classes
1 and 2 are close, high on the 15th and 16th, suggesting they are
from similar directions. The temporal profiles of the K+ + OC
classes, Classes 5 and 7, have the highest number on the morning
of the 13th.

4.2. DBSCAN

The clusters found by DBSCAN are presented inTable 3,
where the representative object and their member numbers are
given. The major clusters include sea salt (Class 1, NO3

− + Na+;
Class 2, NO3− + Mg+; Class 5, Na+; also Classes 7 and 12),
potassium (Class 4, NO3− + K+), potassium and OC (Class
6, K+ + OC; Class 3, SO4− + K+ + OC), EC (Class 17), nickel
(Class 22, Ni+; Class 18, HSO4− + Ni+) and vanadium (Class
13).
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Fig. 4. Temporal profiles of particle number with 1 h resolution for Classes 1–8
by ART-2a.

The centroid spectra of these clusters are shown inFig. 5. The
mass spectra of the sea salt clusters are similar to those found
by ART-2a (Classes 1–3 inTable 2). Their sizes concentrate
around 1�m as indicated inFig. 6. Fig. 7 suggests that most
of the particles containing sodium and magnesium with nitrate
appear on January 15 and 16, similar to the two classes found
by ART-2a.

The potassium class (Class 4 inTable 3) has a wide size range
from 0.4 to 1.0�m and appears during most of the sampling
period.Fig. 5indicates that some sulfate is also present in these
particles. When more sulfate is present, a new representative is
formed as seen inTable 3.

Classes 4 and 14 are two clusters similar to those found
by ART-2a. These are small particles with diameter ranging
from 0.3 to 0.5�m, consistent with emissions from combus-
tion sources.Fig. 7 shows high particle numbers on the 13th
for Class 4 but Class 14 does not show this pattern. Class 3 is
composed of several different types of particles and the major
component in these particles, potassium, organics, sulfate and
nitrate, varies significantly. In the ART-2a analysis, this cluster

Fig. 5. Central spectra of the major clusters found by DBSCAN.

is separated into several clusters according to the differences in
their compositions as shown inTable 2. During transport from
source to the receptor, some of these particles become inter-
nally mixed through condensation and/or coagulation. For each
individual particle, the extent of internal mixing is different and
thus different particle types become continuous. The continua
between sulfate and organics were also found by Middlebrook
et al. [5] and was regarded as one of the major difficulties in
cluster analysis[5]. The size distribution and temporal behavior
is similar to that of Class 5 inTable 2found by ART-2a.

DBSCAN found two EC clusters that are different than the EC
cluster found by ART-2a. The ART-2a EC cluster also contains
sulfate, C3H+ and K+. It seems to be a mixture of two kind of
particles, EC and HSO4+ + K+. Fig. 5 indicates that there is ion
signal for carbon cluster ions ranging from C1

+ to C5
+, which are

considered characteristic ions for EC. As shown inFig. 6, these
are the smallest particles of all the major clusters. The temporal
behavior of the EC cluster is similar to Class 4 (K+ + OC).

The vanadium cluster (Class 13) and two nickel clusters
(Classes 18 and 22) are associated with oil combustion and it was
found that nickel and vanadium particles are externally mixed.
Classes 14 and 15 both have representative object of nickel, sug-
gesting these two clusters are also associated with oil combustion
emissions. Since a small VF was used, these small classes were
not found by ART-2a and have likely been combined with other
classes. One Fe class is found by ART-2a and two Fe classes
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Table 3
Clusters found by DBSCAN and their representative objecta

No. Representative object and their member numbers without cloud Without cloud With cloud Volume fraction without
cloudb (<2.5�m)

1 9710 (NO3
−, NO2

−, Na+); 313 (O−, Na+, K+); 13; 269 (NO2
−, K+); 903 (NO3

−, Na+) 11208 11616 0.315
2 3395 (NO3

−, NO2
−, Mg+); 24; 228 (HNO2

−, Mg+); 12 3659 3847 0.112
3 6702 (HSO4

−, K+); 7; 56; 38; 678 (NO3−, Na+, K+); 169 (C2
−, K+); 348 (HSO4

−, NO3
−,

C+, C3
+); 147; 306; 31; 1062 (HSO4−, OC); 183; 194; 112; 176; 332; 2059 (NO3

−, NO2
−,

Mg+, K+); 568 (HSO4
−, NO2

−, O−, C3
+)

13168 13796 0.104

4 1902 (NO3
−, NO2

−, K+); 377 (HSO4
−, C3

+, K+); 99; 60; 162 (NO3−, K+) 2600 3172 0.048
5 1302 (Na+); 27; 127 (Na+, K+); 29; 7; 29; 22 1543 1544 0.035
6 3694 (C3

+, C3H+, K+); 401 (C3
+, C3H+); 393 (C+, C3

+); 262 (C2H3
+, C3H+, C3H2

+,
C3H3

+/K+)
4750 4751 0.020

7 334 (PO4
−, H(NO2)2

−, Na+, Na2Cl+); 32 366 395 0.017
8 214 (NO2

−, NaH2O+); 22 (HSO4
−, NO2

−, NaH2O+) 236 393 0.015
9 414 (Mg+) 414 415 0.012

10 829 (Ca+); 11(OC, Ca+) 840 960 0.011
11 300 (NO2

−, Fe+) 300 406 0.008
12 348 (Na(NO3)2

−, NO2
−, Na+); 5 353 359 0.007

13 319 (V+, Fe+); 96 (V+, VO+); 26(V+) 441 528 0.005
14 941 (SO4

−, C3
+, C3H+, K+); 160 (H3NiO3

−, SO4
−, Ni+); 8 (SO4

−, Na+) 1109 1110 0.004
15 812 (PO4

−, C3
+, K+); 106 (PO4

−, Ni+) 918 1108 0.004
16 211 (NO3

−, K+, OC) 211 487 0.004
17 1096 (C3

+); 54 (C3
+, C5

+); 14 (C3
+, C4

+) 1164 1165 0.004
18 237 (HSO4

−, Ni+); 13 (HSO4
−, NH4

+, K+); 5 (NO3
−, Ni+) 255 306 0.004

19 469 (C2
−, C3

+); 12 (NO2
−, C2

−, Na+) 481 640 0.003
20 221 (NO3

−, Na+); 2 223 287 0.003
21 375 (NO3

−, C3
+); 19 (NO3

−, NO2
−, C5

+); 40 (NO2
−, C3

+, C3H+); 14 (HSO4
−, C3

+) 448 449 0.002
22 269 (Ni+); 13(C3

+, C3H+, C3H2
+, C3H3

+, Ni+) 282 364 0.002
23 330 (NO3

−, K+) 330 421 0.002

Sum – 45299 48519 0.742

a The number before each parenthesis is the member number of a representative. A new representative begins after a semicolon.
b All the above clusters explain 0.872 of the total volume.

Fig. 6. Size distributions of major DBSCAN clusters.
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Fig. 7. Temporal profiles of particle number with 1 h resolution for major
DBSCAN clusters.

were found by DBSCAN. It appears that the two Fe classes we
combined by ART-2 and that the weight vector is dissimilar to
both of them.

The negative spectra of some particles were missing, so ev
if the positive spectra of two particles were identical, they wer
still classified into different clusters. InTable 3, some clusters
without negative signal can be combined into those with com
plete spectra manually, such as Class1/Class 5, Class 2/Clas
and Class 17/Class 19.

The two methods found similar small classes such a
PO4

− + K+ + OC (Class 34 inTable 2and Class 15 inTable 3)
and some minor classes were found only by one method. Sin
a small vigilance factor is used for ART-2a, the minor classes i
Table 2may not be as reliable as those inTable 3.

The daily bulk phase concentrations of PM2.5 and some
chemical species are listed inTable 4. The PM2.5 concentra-
tion is highest on January 12 and lowest on January 16. Th
other major species and metals, except Na, also show this tren
Together, these data suggest that anthropogenic sources do

inated PM measured on January 12 and that air parcels from
the clean areas dominated on the 15th. The time series of the
K+ + OC clusters and sea salt clusters are consistent with the
aforementioned conclusion from the bulk phase measurements.
The size dependence of the particle detection efficiency for the
ATOFMS has been discussed by Allen et al.[19]. For particles
from 0.32 to 1.8�m in diameter, the detection efficiency was
highest for the largest particles and declined by approximately
2 orders of magnitude for the smallest particles. Since the par-
ticles dominating January 12 were small and had low detection
efficiencies, the actual particle number in the atmosphere on
January 12 was the highest.

There is good agreement between the two methods on the
size and temporal distributions of different particle types for the
major classes, such as the sodium classes, magnesium classes
and K+ + OC classes.

Two back trajectories (January 12, 2004, 10:00 a.m. and Jan-
uary 15, 2004, 3:00 a.m.) originating from the receptor site were
computed by HYSPLIT[20,21] and are presented inFig. 8.
On the morning of January 12, the air mass traveled through
a heavy residential area in New Jersey before reaching the
receptor site and the high K+ + OC concentrations measured
during this time were likely due to wood burning for heat.
On the early morning of January 15, the trajectory was from
relatively clean areas in Canada and New York State, consis-
tent with the low PM concentration around that time. After
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the sudden change of direction at the Connecticut coas
salt particles were collected and transported to the rec
site.

5. Discussion

When using ART-2a for classification, it is assumed tha
same kind of particles are similar and their mass spectr
concentrated within a small space whose size is determin
the vigilance factor. However, this assumption may not be
for all the particle types. For example, when the organics
ablated, various fragment ions are produced such that their
spectra may occupy a large space, and two organic spectr
not be similar. The ion spectra generated from the ablatio
confined in a certain space, and when there are a large nu
of particles measured, the density inside the space will be
nificantly higher than outside. Because of this discontinuit
density, DBSCAN is able to identify the aforementioned sp
no matter what size and shape it has. Based on the classifi
results in this study, the assumption of DBSCAN that the s
tra are located in a certain space with high density seems
realistic.

It can be found fromTable 3that some clusters are large a
some are small, based on the number of representative o
Thus, using a constant VF is not effective to correctly clas
all of the clusters. For the classes with continua, the conce
cluster may not be applied since the transition between th
ferent particle types is gradual. The representative object f
within the cluster with continua can identify the different part
types for further physical interpretation.
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Table 4
STN/ASRC (Speciated Trend Network/Atmospheric Science Research Center, State University of New York at Albany) measurement of bulk phase concentrations
of PM2.5 and some chemical speciesa

Date January 10, 2004 January 11, 2004 January 12, 2004 January 13, 2004 January 14, 2004 January 16, 2004

PM2.5 8.3 18.0 31.7 15.2 10.0 6.7
EC 0.530 −0.017 0.605 0.817 0.083 0.337
OC 1.40 0.527 4.26 2.02 −0.188 0.800
NH4

+ 0.952 2.112 4.226 2.213 0.894 0.651
K+ 0.050 0.054 0.100 0.051 0.026 0.000
Na+ 0.086 0.120 0.151 0.094 0.258 0.176
NO3

− 1.560 3.932 7.190 3.128 1.879 1.002
SO4

2− 1.682 2.831 5.472 3.843 1.685 1.649
Ca 0.0458 0.0456 0.123 0.064 0.040 0.0148
Cr 0.00099 0.00089 0.00275 0.00123 0.00046 0.00048
Cu 0.003 0.0035 0.0094 0.0040 0.0021 −0.0007
Fe 0.048 0.064 0.19 0.10 0.040 0.027
Pb 0.0022 0.0057 0.0212 0.0079 0.0034 0.0012
Mn 0.00069 0.00117 0.0019 0.0011 −0.0000 −0.0002
Ni 0.0321 0.0486 0.0947 0.058 0.025 0.037
K 0.0376 0.0445 0.11 0.045 0.032 0.026
Si 0.041 0.066 0.12 0.088 0.029 0.083
Ti 0.000178 0.00025 0.0063 0.0058 0.0011 −0.00063
V 0.01 0.01 0.0247 0.0147 0.0079 0.0064

a The units of all reported concentrations are�g/m3.

Fig. 8. Back trajectories computed by HYSPLIT on January 12th (left) and 15th (right), 2004.

6. Conclusion

ART-2a and DBSCAN have been used for the classifica-
tion of single particle mass spectra measured at the New York
supersite. When using high vigilance factors, too many sim-
ilar clusters were formed and there were areas of overlap
between them. This problem can be partially solved by using
low vigilance factors. However, for the clusters found by ART-
2a with low VFs, more representative object than the center
may be needed, since the objects in each cluster are not so
similar.

For the first time, the cluster structure of single particle mass
spectra is investigated by a density-based method. The repre-
sentative object of the clusters found by DBSCAN were chosen
by the Kennard and Stone algorithm for better understanding
each cluster and also for measuring the sizes of the clusters. All

the ART-2a clusters are spheres with the same sizes (determined
by VF). The shapes and sizes of DBSCAN clusters are various.
Some are small such as Classes 11and 16 inTable 3and they are
close to spheres. Some are large and may have several branches,
such as Class 3 whose branches extend along HSO4

+, K+ and
C+/C2

+ directions.
Similar sea salt clusters (sodium nitrate and magnesium

nitrate) were found by the two methods. Among sulfate, potas-
sium and OC particles, there are serious continua caused by
internal mixing and a large cluster was found by DBSCAN.
The clusters found by ART-2a, with different content of sulfate,
potassium and OC, need to be combined.

The classification results indicate that a majority of the parti-
cles detected on January 12 were from anthropogenic combus-
tion sources and that sea salt particles dominated on January 15
and 16.
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