Xenobiotic phenols in early pregnancy amniotic fluid

Stephanie M. Engel a,∗, Brynn Levy b, c, Zhisong Liu a, d, Dana Kaplan a, Mary S. Wolff a

a Department of Community and Preventive Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1043, New York, NY 10029, USA
b Department of Human Genetics, Pediatrics, and Obstetrics, Mount Sinai School of Medicine, New York, NY, USA
c Department of Gynecology & Reproductive Sciences, Mount Sinai School of Medicine, New York, NY, USA
d Tris Pharma Inc., Monmouth Junction, NJ 08852, USA

Received 8 April 2005; received in revised form 27 June 2005; accepted 6 July 2005
Available online 19 August 2005

Abstract

We found detectable levels of three phytoestrogens (enterolactone, daidzein, and genistein) and bisphenol A (BPA) in 21 residual amniotic fluid samples that were collected before 20 weeks gestation. Samples were obtained by amniocentesis from women who were referred to the Mount Sinai Medical Center because of advanced maternal age. Phytoestrogens were present in higher concentrations than BPA. Enterolactone was detected at the highest concentration (median 95.9 μg/L), followed by daidzein and genistein (9.5 and 1.4 μg/L, respectively). BPA was present at very low concentrations (10% > LOD of 0.5 μg/L). The relative concentration of the chemicals measured in amniotic fluid were identical to those in urine reported by other studies, i.e. enterolactone > daidzein > genistein ≫ BPA. Amniotic fluid is a source of fetal exposure to polar xenobiotics that come from the mother.

Keywords: Amniotic fluid, Bisphenol A, Phytoestrogens, In utero

1. Introduction

Hormonally active chemicals, such as bisphenol A (BPA) and phytoestrogens, have been detected in amniotic fluid [1–3]. Phytoestrogens and BPA are weak hormone agonists. Phytoestrogens also possess anti-estrogenic activity possibly by competitive binding to the estrogen receptors, and can reduce genotoxic damage to cells by antioxidant and other mechanisms [4, 5]. They can also inhibit cellular growth and proliferation by inhibiting tyrosine kinase cell-signaling activity and by downregulating certain membrane receptors (e.g. erbB2, EGFR) [6, 7]. In addition, phytoestrogens are powerful antioxidants [8]. Moreover, the joint effect of multiple hormonally active low-level compounds could be biologically relevant [9]. Consequently, concern has been mounting that prenatal exposure to hormonally active agents may result in reproductive or neurological effects [10–12].

We examined the concentration of three phytoestrogens (enterolactone, daidzein, and genistein) and BPA in residual amniotic fluid samples that had been collected early in pregnancy from a population of women in the US.

2. Materials and methods

Twenty-one consecutive amniotic fluid specimens were collected by amniocentesis before 20 weeks gestation from women who were referred to the Mount Sinai Medical Center with the sole indication of advanced maternal age (AMA). AMA indications are generally reserved for women over the age of 35 and are associated with a relatively low risk for fetal abnormalities (chromosomal) when compared to the risks associated with Mendelian inheritance or an abnormal ultrasound scan. Women with AMA indications were selected because women who receive an amniocentesis at younger ages generally have high-risk indications that could...
exposure. These differences may be attributable to differences in the exposure patterns between study populations. Exposure to isoflavones (including daidzein and genistein) is largely through the use of soya in processed foods [14]. Enterolactone is the highest phytoestrogen in the Western diet, as well as in urine samples measured in most US studies [13,15]. It has never before been measured in amniotic fluid; however, it was the highest chemical present overall in our sample. Enterolactone is derived from lignan precursors in whole grains, seeds, nuts, vegetables, berries, tea, and coffee [16], and has been found to have both pro- and anti-estrogenic effects depending on the concentration. Between 0.5 and 2 μM, enterolactone stimulated the proliferation of MCF-7 cells; however, inhibition occurred above 10 μM [17,18]. We observed intraamniotic concentrations of enterolactone in the range of 0.4–4 μM in amniotic fluid. Therefore, these concentrations may be biologically relevant. BPA is weakly estrogenic. Two studies have examined BPA concentration in early pregnancy amniotic fluid samples in Japanese populations from different locations, although none have been reported in a US population, which may have substantially different exposure patterns. Yamada et al. examined the change in amniotic fluid BPA concentration over a 10-year period, and found that median values ranged from 0.00 to 0.68 μg/L, with the 10-year overall median of 0.26 μg/L [3]. These values are very similar to those we observed in this study. However, another study from Japan reported a substantially higher mean BPA concentration in early pregnancy amniotic fluid samples (8.3 ± 8.9 μg/L); in term amniotic fluid samples the levels of BPA were within the range reported by ours and Yamada et al. (1.1 ± 1.0 μg/L) [2]. In another study of a Japanese population, median levels of BPA in urine declined as much as 2.2-fold between 1992 and 1999, possibly relating to industrial changes in the interior coating of canned beverages and foods in 1997 [19]. Silva et al. observed a median effect concentration of 0.8 μM for BPA [9]. In a recent comparison of the estrogenicity of a variety of chemicals, BPA induced the highest estrogenic response of all the environmental chemicals tested, albeit at a potency several thousand times lower than 17β-estradiol [20]. The intraamniotic concentration of BPA in our subjects was low, and ranged from 0.01 to 0.1 μM. It remains to be seen whether exposure at this level presents a threat to fetal health.

References