The effects of the organochlorine (OC) liver tumor promoter heptachlor epoxide (HE) and a related non-tumor promoting OC, delta-hexachlorocyclohexane (d-HCH), on the dynamics of intracellular calcium (Ca$^{2+}$) were investigated in mouse 1c1c7 hepatoma cells. HE induced a non-capacitative, Ca$^{2+}$ entry-like phenomenon, which was transient and concentration-dependent with 10 and 50µM HE. The plasma membrane Ca$^{2+}$ channel blocker SKF-96365 antagonized this HE-induced Ca$^{2+}$ entry. d-HCH failed to induce Ca$^{2+}$ entry, rather it antagonized the HE-induced Ca$^{2+}$ entry. Both HE and d-HCH induced Ca$^{2+}$ release from endoplasmic reticulum (ER) at treatment concentrations as low as 10µM; at 50µM, the former induced 5× as much Ca$^{2+}$ release as the latter.

The HE-induced Ca$^{2+}$ release from the ER was antagonized using the IP$_3$ receptor/channel blocker xestospongin C, suggesting that HE induces ER Ca$^{2+}$ release through the IP$_3$ receptor/channel pore. These results show that the effect of HE on cellular Ca$^{2+}$ mimics that of mitogens such as epidermal and hepatocyte growth factors. They also provide insight into the similarities and differences between tumorigenic and non-tumorigenic OCs, in terms of the mechanisms and the extent of the [Ca$^{2+}$], increased by these agents.

© 2006 Elsevier Ireland Ltd. All rights reserved.

Keywords: Ca$^{2+}$ entry; Hepatoma cells; Heptachlor epoxide; Delta-HCH; Intracellular Ca$^{2+}$; Liver cancer

1. Introduction

Heptachlor epoxide (HE) is a highly persistent and lipophilic cyclodiene organochlorine (OC) compound and metabolite of the insecticide heptachlor, which bioconcentrates in the liver to induce a number of chronic effects. One of these chronic effects is hepatic tumor promotion (NCI, 1977; WHO, 1984; Williams and Numoto, 1984) for which the mechanism of action is poorly understood. On the other hand, a physicochemically very similar agent, d-HCH, a hexachlorocyclohexane compound and isomer of lindane (γ-hexachlorocyclohexane), shows little or no tumorigenic activity.

Previously, it has been reported from this laboratory (Hansen and Matsumura, 2001a) that HE, given in diet at 20 ppm, causes down-regulation of the enzymatic activities of protein kinase C that were stimulated by exogenously added Ca$^{2+}$ in liver homogenates prepared from treated male B6C3F1 mouse livers. Up-regulation of AP-1 proteins was found to accompany this phenomenon. This observation lends support to the notion that the ability of HE to increase intracellular Ca$^{2+}$ concentrations may play a role in its tumor promoting action. Elevated levels of intracellular free Ca$^{2+}$ ([Ca$^{2+}$]) is...
one of the earliest effects induced by certain OC compounds (Yamaguchi et al., 1980; Madhuskar et al., 1983; Suzuki et al., 1988; Criswell et al., 1994). Ca\(^{2+}\) is critical for many cellular signal transduction processes. Following cell-surface-receptor activation by agonists like bradykinin, angiotensin II, or peptide growth factors, for instance, the phosphoinositide (PI) signal transduction cascade is initiated. Among the earliest events in PI signaling is the release of Ca\(^{2+}\) from stores in the endoplasmic reticulum (ER), followed by Ca\(^{2+}\) influx across the plasma membrane, a process termed capacitative or depletion-activated Ca\(^{2+}\) entry (Parekh and Putney, 2005). Spatially and temporally defined changes in [Ca\(^{2+}\)]\(_i\), provide essential secondary signals necessary for cell activation and proliferation. Mitochondria also play a role in PI signaling, accumulating Ca\(^{2+}\) released from nearby ER and activating a number of Ca\(^{2+}\)-responsive metabolic enzymes (Höök et al., 1995; Jouaville et al., 1995).

Altered regulation of Ca\(^{2+}\) signaling events have been shown to be an important component of the tumor promotion process in several cases. For instance, elevation of [Ca\(^{2+}\)]\(_i\), is associated with decreased gap junctional intercellular communication (GJIC) and closure of gap junctions, effects used to document the tumor-promoting potential of a compound (Rose et al., 1977; Peracchia and Peracchia, 1980; Matesic et al., 1994). A number of chemicals that primarily affect [Ca\(^{2+}\)]\(_i\), such as thapsigargin (TG) and ionomycin are also well-documented tumor promoters (Rose and Loewenstein, 1975; Thastrup et al., 1987; Perchellet et al., 1990; Iijima et al., 1991; Lazar and Peracchia, 1993; Crow et al., 1994), whereas compounds that inhibit the actions of Ca\(^{2+}\), such as calmodulin inhibitors (e.g., flunarizine) and Ca\(^{2+}\)-channel blockers (e.g., verapamil) are known to inhibit tumor development (McGaughey and Jensen, 1980, 1982; Sezzi et al., 1985; Simpson, 1985; Tsuruo et al., 1985; Hati, 1987). Non-pathophysiological Ca\(^{2+}\) signals are typically characterized by their temporal transience. In hepatocytes, when intracellular [Ca\(^{2+}\)], remains elevated for prolonged periods, adverse cellular responses can result such as oxidative stress and release of inflammatory cytokines and formation of ER stress response proteins like glucose-related-protein 78 and CHOP (C/EBP homologous protein), leading to decreased GJIC. Furthermore, mobilization of intracellular Ca\(^{2+}\) is associated with cellular changes occurring at the level of the gene, for example, up-regulation of the immediate-early gene product and protooncogene c-FOS (Morgan and Curran, 1986; Bandopadhyay and Bancroft, 1989; Diliberto et al., 1990). OC tumor promoters such as DDT, chlordane, and HE have been reported to increase [Ca\(^{2+}\)]\(_i\), (Yamaguchi et al., 1980; Madhuskar et al., 1983; Suzuki et al., 1988) and decrease GJIC (Ruch et al., 1990; Matesic et al., 1994) in a number of cell types. Matesic et al. (1994), for example, using moderate OC concentrations (25.7 μM HE or 26.3 μM dieldrin) found that the OCs HE and dieldrin inhibited GJIC in liver cell cultures within 2 min of exposure. Though some recovery followed, GJIC was still significantly inhibited 24 h post-treatment. Additionally, Suzuki et al. (1988) showed that heptachlor, HE, and chlordane elevated [Ca\(^{2+}\)]\(_i\), in leukocytes by inducing Ca\(^{2+}\) influx, release from intracellular stores, and Ca\(^{2+}\) release from unspecified membrane sites. These observations indicate that OCs as a group generally appear to affect cellular Ca\(^{2+}\) regulation, but they do not offer information on a precise cellular target or mechanisms of action. Therefore, a substantial amount of additional work is needed to clarify the specificity of action of individual OCs. The present work examines the mechanisms by which HE and 6-HCH alter intracellular Ca\(^{2+}\), and how this deregulation correlates to their tumor promoting activity. In the studies described herein, HE and 6-HCH were employed as representative tumorogenic and non-tumorogenic agents in an attempt to decipher the mechanistic differences between the two OCs related to OC-induced Ca\(^{2+}\) deregulation and AP-1 activation. In order to distinguish each source of calcium input that is affected by these pesticides and thereby contributes to the eventual rise in its intracellular concentration from others in the current study, we have relied on the use of well accepted diagnostic agents as shown in Fig. 1. The major new findings documented here include the observation that HE induces a pattern of Ca\(^{2+}\) signaling similar to that induced by PI cascade agonists - that is Ca\(^{2+}\) release from ER stores followed by Ca\(^{2+}\) entry. Also important are our findings that Ca\(^{2+}\)-influx appears to be through SKF-96365-sensitive, plasma membrane, Ca\(^{2+}\) channels, while the ER Ca\(^{2+}\) release induced by HE-treatments appears to be through xestospongin C-sensitive, IP\(_3\) receptor, Ca\(^{2+}\) channels. The temporal persistence of HE-mediated Ca\(^{2+}\) signals appears to be sufficient by itself to significantly enhance AP-1 activation and DNA binding.

2. Material and methods

2.1. Chemicals

HE was obtained from Dow Chemical (Midland, MI). Fura-2/AM and pluronic F-127 were purchased from Molecular Probes (Eugene, OR). Dulized calf serum (10kDa max pore size), oligomycin, thapsigargin, 1x trypsin/EDTA...
provided by Drs. Isaac Pessah and Tadeusz Molinski, University of California, Davis (Gidut et al., 1997; Miyamoto et al., 2000).

2.2. Cell culture

Mouse 1c17 hepatoma cells were a gift from Dr. Hankinson (University of California, Los Angeles; Hankinson et al., 1985; Watson and Hankinson, 1992). Human HepG2 cells were purchased from the American Type Culture Collection (Rockville, MD). Cells were maintained in 100 mm diameter plastic cell culture dishes, containing 6–10 ml of "culture medium" (α-MEM supplemented with 25.2 mM sodium bicarbonate, 10 % FBS, and 1 % antibiotic-antimycotic solution, pH 7.4, 100 units/ml penicillin, 100 μg/ml streptomycin sulfate, and 0.25 μg/ml amphotericin B in 0.85 % NaCl) depending on cell density. Media was changed every 2 or 3 days, and cells were subcultured following trypsinization every 1–2 weeks.

2.3. Cell preparation

Hepatoma cells were grown to confluence, rinsed with 3 ml of PBS (phosphate-buffered saline; 154 mM NaCl, 1 mM KH2PO4; 3 mM Na2HPO4; pH 7.4), then detached with 1 × trypsin/EDTA (Sigma Chemical Co.). Cells were diluted 1:1 in culture medium, and sedimented at 50 × g for 5 min at room temperature. The supernatant was removed, and the cells were resuspended in culture medium and stored at 37 °C/5% CO2 until use within 6 h.

2.4. Loading intact hepatoma cells with fura-2/AM

Hepatoma cells were loaded for 30 min at 37 °C with 5 μM fura-2/AM (20 % (v/v) pluronic F-127 in DMSO, 5 μM/ml media) in the presence of 1 % dialyzed (10 kDa maximum pore size) FBS (fetal bovine serum), 1 % antibiotic-antimycotic solution, 250 μM sulfinpyrazone (from DMSO stock), and 100 μM piperonyl butoxide (from ethanol stock). Cells were then sedimented at 4 °C for 3 min (1156 × g), rinsed with 4 ml of the "physiologic Ca2+ medium" (140 mM NaCl, 10 mM HEPES, 10 mM glucose, 5 mM KCl, 1 mM CaCl2, 1 mM MgSO4, pH 7.4), and re-sedimented. Cells were then resuspended in 3 ml of the appropriate isometric buffer (physiologic or low Ca2+ medium), containing 250 μM sulfinpyrazone and 1 % dialyzed FBS (10 kDa maximum pore size), 1 % antibiotic-antimycotic solution and placed in a disposable methacrylate fluorometry cuvette.

2.5. Intracellular Ca2+ measurements

Intracellular Ca2+ was measured with cells suspended in a 4 ml disposable methacrylate cuvette using a computer controlled PTI (Photon Technology International Inc., South Brunswick, NJ) fluorimeter with a lens-based sample com-

Fig. 3. Schematic diagram showing the target sites for heptachlor epoxide (HE) and H-HCH, related to modulation of intracellular free Ca2+ concentrations ([Ca2+]i), as well as diagnostic agents used in this work in 1c17 hepatoma cells (large circle). A "−" sign indicates that the agent increases Ca2+ mobilization or ([Ca2+]i), while a "+" sign indicates that the agent decreases it. A blow-up of the ER is included below the cell to show the Ca2+ ATPase and IP3 R/Ca2+ channel in greater detail. Generally speaking, HE mobilizes Ca2+ from the ER and promotes Ca2+ influx through plasma membrane Ca2+ channels. SKF96365, on the other hand, inhibits or blocks Ca2+ influx through the plasma membrane, preventing Ca2+ influx; TG inhibits the ER Ca2+ ATPase, which pumps Ca2+ into the lumen of the ER against a gradient, thereby causing Ca2+ to leak out of the ER; oligomycin inhibits ATP synthase, causing C4 to leak out of the mitochondria; and XeC blocks Ca2+ from passing through the IP3 R associated Ca2+ channel. Abbreviations used are: ER (endoplasmic reticulum), IP3 R/Ca2+ channel (inositol 1,4,5-triphosphate receptor/Ca2+ channel), TG (thapsigargin), XeC (Xestospongin C), and SKF (SKF96365).
2.6. Determination of the effect of HE and δ-HCH on [Ca$$^{2+}$$]$_i$ in intact cells

Fura-2/AM loaded mouse hepatoma cells were prepared as described above. Cells were suspended in physiologic Ca$$^{2+}$ medium, containing 1 mM extracellular Ca$$^{2+}$, and treated with HE (1–50 μM in ethanol) or δ-HCH (1–50 μM in DMSO). For all of the test compound-containing assays, appropriate controls were performed using the largest volume of solvent used for the HE and δ-HCH assays.

2.7. Determination of Ca$$^{2+}$ source(s) for HE and δ-HCH induced [Ca$$^{2+}$$], elevations in intact cells

The sources of OC-mobilized free Ca$$^{2+}$ were investigated using the following approach. The extracellular Ca$$^{2+}$ pool was partially isolated by suspending cells in physiologic Ca$$^{2+}$-free medium (~1 mM free Ca$$^{2+}$) and depleting ER and mitochondrial, oligomycin-sensitive Ca$$^{2+}$ stores (Huang and Chueh, 1996; Cho et al., 1997) with the ER, Ca$$^{2+}$-ATPase inhibitor thapsigargin (TG; 500 nM in ethanol) and the mitochondrial inhibitor oligomycin (12 μM). In addition to eliminating the extracellular Ca$$^{2+}$ as a potential source of free Ca$$^{2+}$, and depleting the oligomycin-sensitive, mitochondrial-Ca$$^{2+}$ store with oligomycin.

2.8. Determination of the effect of SKF-96365 and δ-HCH on HE-induced Ca$$^{2+}$$ influx

To further confirm whether HE was affecting the extracellular Ca$$^{2+}$ pool, cells were treated with the receptor-mediated, Ca$$^{2+}$-channel blocker SKF-96365 (Cabello and Schilling, 1993), to antagonize Ca$$^{2+}$ influx through receptor-mediated Ca$$^{2+}$ channels, or δ-HCH, which inhibits Ca$$^{2+}$ entry by an unknown mechanism (Mole et al., 1995).

2.9. AP-1 transcription factor binding

AP-1 transcription factor binding experiments were performed as described by Hansen and Matsumura (2001b). Protein extracts (10 μg) were incubated for 20 min at 25°C in “gel mobility shift incubation buffer” (80 mM KCl, 10 mM HEPES, 4% Ficoll, 1 mM EDTA, pH 7.9) with 0.2–0.6 ng/lane radioactively labelled AP-1-responsive element oligonucleotide. Poly(dI-dC) [1 μg/0.1 μg oligonucleotide] and acetylated BSA (5 μg/lane) were incubated to inhibit nonspecific binding. Specificity was determined by preincubated selected samples with a 250-fold molar excess of cold, AP-1-responsive element. Samples were separated on a 6% non-denaturing, polyacrylamide gel for 2–4 h at 30 mA/gel. Gels were dried and incubated with X-ray film, and bands were quantified using densitometry.

3. Results

3.1. HE rapidly increases [Ca$$^{2+}$$]

The effects of various HE and δ-HCH concentrations on [Ca$$^{2+}$$], were tested in intact mouse hepatoma cells. Fig. 2 shows that 1 μM HE produced a slight increase in [Ca$$^{2+}$$], characterized by a slow rate. Upon addition of 5 μM HE, hepatoma cells responded with an initial rapid rise in [Ca$$^{2+}$$], that progressed with a more gradual second phase (Fig. 2A, second trace). With higher HE concentrations (10, 30, and 50 μM), the mean maximal rates increased in a concentration-dependent manner. With 50 μM HE a very robust rise in [Ca$$^{2+}$$], was observed (Fig. 2A, bottom trace), with the mean maximal rates of the HE-induced rise in [Ca$$^{2+}$$], summarized in Fig. 2B. The mean maximal rate of Ca$$^{2+}$ elevation seen with 50 μM HE was 45.3 nM/min. In Ca$$^{2+}$-replete hepatoma cells (containing ~1 mM Ca$$^{2+}$$), δ-HCH (50 μM), given by itself, rapidly elevated [Ca$$^{2+}$$], much like HE,
Fig. 2. HE concentration–response experiments in intact hepatoma cells in physiologic Ca\(^{2+}\) medium. Mouse hepatoma cells were loaded with 5 μM fura-2/AM suspended in 3 ml of physiologic Ca\(^{2+}\) medium containing approximately 1 mM free Ca\(^{2+}\), as described in Section 2. HE additions of 1, 5, 10, 30, and 50 μM were made 3 min after beginning fluorimetric monitoring and presented (A) as real time intracellular Ca\(^{2+}\) concentrations ([Ca\(^{2+}\)]\(_{i}\)). Each trace represents a mean trace composed of combined traces from three or four separate assays, plotted as mean maximal rates of increased [Ca\(^{2+}\)]\(_{i}\) (B.). Bars represent mean rates ± standard errors of the mean. Control rate = 0. *: Statistically significant at \(P \leq 0.05\).

3.2. Effect of HE and δ-HCH on AP-1 transcription factor binding

Experiments were also performed to determine if HE influences activator protein 1 (AP-1) transcription factor (TF) DNA binding, an interaction known to be enhanced by certain Ca\(^{2+}\) signals. AP-1 like other primary-response (or immediate-early) TFs are the first TFs activated in response to growth factors and other mitogens (Mohr et al., 1990). Nuclear extracts were isolated from cells treated with 0, 10, or 50 μM HE for 1 h, conditions similar to those utilized to assess [Ca\(^{2+}\)]\(_{i}\). AP-1 DNA binding was increased by 112.6 and 155.8% over that of vehicle-treated, control cells (Fig. 3A and B). The results showed that HE (10 μM), a compound that induces Ca\(^{2+}\) entry, had a prolonged effect on AP-1 DNA binding, significantly increasing DNA binding at 1 and 3 h, with binding leveling off to the control level at 6 h (Fig. 3C). In contrast, δ-HCH also increased AP-1 DNA binding only with a 1 h treatment but down-regulated binding at 3 and 6 h. Therefore, activation of AP-1 DNA binding correlated well with HE-induced changes in Ca\(^{2+}\) handling in terms of both treatment concentration and time course.

3.3. Differential mechanisms for HE- and δ-HCH-induced Ca\(^{2+}\) entry

In the experiments shown in Fig. 4, an attempt was made to determine if the action of HE on [Ca\(^{2+}\)]\(_{i}\) was due solely to release from an intracellular Ca\(^{2+}\) store or from Ca\(^{2+}\) influx, as well. As expected, sequential addition of 6 μM oligomycin and 500 nM thapsigargin (TG) caused sharp rises in [Ca\(^{2+}\)]\(_{i}\), ascribable to emptying of mitochondrial and ER stores, respectively. In the hepatoma cell line used here, as is common with other cells, the ER appears to represent the major Ca\(^{2+}\) store, judging by the larger increase in [Ca\(^{2+}\)]\(_{i}\) versus oligomycin. The reduction in [Ca\(^{2+}\)]\(_{i}\) subsequent to the TG addition is likely due to unidirectional efflux out of the cells, since in this experiment, both of the major Ca\(^{2+}\) sequestering organelles have been already inhibited. The prolonged [Ca\(^{2+}\)]\(_{i}\) elevation commonly seen after depletion of stores has been ascribed to a small component of depletion-activated Ca\(^{2+}\) entry (Llopis et al., 1992). Interestingly, exposure of the Ca\(^{2+}\)-depleted cells to HE resulted in a sharp, concentration-dependent rise in [Ca\(^{2+}\)]\(_{i}\), which is likely to be attributable to the ability...
Fig. 3. Effect of HE and δ-HCH on AP-1 nuclear transcription factor binding. (A) and (B) Nuclear extracts were isolated from lclc7 cells exposed to 0, 10, or 50 μM HE for 1 h. AP-1 binding to its DNA response element was performed as described in Section 2. (C) Shows a time-course effect of HE and δ-HCH on human HepaG2 cells for 1, 3, and 6 h. AP-1 bands (not shown) of interest were plotted following densitometer analysis of each band expressed as a percent of control AP-1 DNA binding activity (control = 100%) from single values. A large excess of cold AP-1 was used to show specificity of the DNA binding effect for AP-1.

of this OC to induce Ca2+ entry. The mean maximal rates for Ca2+ influx were 3.9 ± 5.9 and 13.9 ± 7.2 nM/min for 10 and 50 μM HE, respectively (Fig. 4B).

To test this possibility, the effects of δ-HCH on hepatoma cells (Ca2+), were studied. Although δ-HCH mobilizes Ca2+ from stores in RBL cells, it has also been reported to concomitantly inhibit Ca2+ entry in these cells (Mohr et al., 1995). Hence, both HE and δ-HCH elevate [Ca2+], as has been previously reported in other cell types (Yamaguchi et al., 1980; Suzaki et al., 1988; Mohr et al., 1995 for δ-HCH). However, an important difference was observed here in the response of hepa-
Fig. 4. Differential effects of HE and 8-HCH on Ca$^{2+}$ entry. Experiments were performed essentially as described in Fig. 2 and Section 2. The extracellular Ca$^{2+}$ pool was partially isolated (A) by depleting the oligomycin-sensitive mitochondrial Ca$^{2+}$ pool with 6 µM oligomycin 3 min after beginning fluorimetric monitoring and the ER Ca$^{2+}$ pool with 500 nM thapsigargin 6 min following initiation of the experiment. Cells were then treated 13 min after beginning experiment with 10 or 50 µM HE or 50 µM 8-HCH to determine their effects on the extracellular Ca$^{2+}$ pool. The concentrations of oligomycin and thapsigargin used were found to completely deplete the oligomycin-sensitive mitochondrial and ER Ca$^{2+}$ pools, respectively. The vehicles (ethanol for HE and DMSO for 8-HCH) had no effect on [Ca$^{2+}$]i (data not shown). Each trace represents a mean trace composed of combined traces from three or four separate assays, plotted as mean maximal rates of Ca$^{2+}$ influx (B). Bars represent mean rates ± standard errors of the mean. Control rate = 0. *: Statistically significant at $P \leq 0.05$.

atoma cells to these two OC compounds. As Fig. 4A (bottom trace) shows, 8-HCH introduced to oligomycin-and TG-pretreated cells, did not stimulate Ca$^{2+}$ uptake, unlike the case of HE (Fig. 4A top and center traces). Instead, 8-HCH reduced the internal Ca$^{2+}$ concentration beyond the resting level (i.e., below the dotted line) under this experimental condition.

The HE-induced, Ca$^{2+}$-entry phenomenon was studied more intensively in hepatoma cells. As illustrated in Fig. 5A (second trace), SKF-96365, an agent shown to attenuate Ca$^{2+}$ influx through plasma membrane, receptor-mediated, Ca$^{2+}$ channels (Cabello and Schilling, 1993), enhanced the Ca$^{2+}$-extrusion process in Ca$^{2+}$-depleted hepatoma cells (compare first and second traces). Subsequent addition of 50 µM HE after 50 µM SKF-96365 dramatically reduced HE-induced Ca$^{2+}$ influx (second trace). Furthermore, pretreatment with 100 µM SKF-96365 completely eliminated HE-induced Ca$^{2+}$ influx (third trace). HE induced a mean rise of [Ca$^{2+}$], of 36.3 ± 8.5 nM (statistical significance at $P \leq 0.05$ compared to control), with a mean maximal influx rate of 17.7 ± 6.5 nM/min. The respective HE-induced increases in [Ca$^{2+}$], after 50 and 100 µM SKF-96365 were 18.3 and 14.1 nM, respectively, with corresponding maximal Ca$^{2+}$-entry rates of 6.4 and 2.3 ± 5.2 nM/min.

Likewise, 50 µM 8-HCH substantially inhibited HE-induced Ca$^{2+}$ entry, while 100 µM 8-HCH almost completely inhibited HE-induced Ca$^{2+}$ influx (Fig. 5A, fourth and fifth traces). Hence, HE induces Ca$^{2+}$ entry through the plasma membrane, whereas 8-HCH attenuates Ca$^{2+}$ entry even in the presence of HE in mouse hepatoma cells.

3.4. HE Mobilizes Ca$^{2+}$ from the ER Store by a xestospongin C-sensitive mechanism

The mechanism by which HE and 8-HCH mobilize Ca$^{2+}$ from the ER Ca$^{2+}$ store was evaluated under conditions which minimize Ca$^{2+}$ entry into intact mouse
Fig. 5. Inhibitory effect of SKF-96365 and 8-HCH on HE-induced extracellular Ca^{2+} influx. Experiments were performed essentially as described in Fig. 2 and Section 2. The extracellular Ca^{2+} pool was studied in partial isolation in intact hepatoma cells as described in Fig. 3. Cells were treated (A) 16 min into the experiment with vehicle, 50 or 100 μM SKF-96365, or 50 or 100 μM 8-HCH to determine their effect on HE-induced Ca^{2+} entry. HE was added 21 min after initiating fluorimetric monitoring. Each trace represents a mean trace composed of combined traces from three or four separate assays, plotted as mean maximal rates of Ca^{2+} influx (B.). Bars represent mean rates ± standard errors of the mean. Control rate = 0.

\[\text{** : Statistically significant at } P \leq 0.05. \]

hepatoma cells by buffering the extracellular Ca^{2+} concentration to ∼100 nM free Ca^{2+} and depleting the mitochondrial Ca^{2+} store with oligomycin (6 μM; Fig. 6). Under these conditions, 10 and 50 μM HE elevated [Ca^{2+}] by 32.3 ± 1.6 and 106.5 ± 27.3 nM (statistical significance at \(P < 0.05 \)) over control [Ca^{2+}], respectively (Fig. 6 top two traces). The corresponding mean maximal rates of ER Ca^{2+} release were 3.6 ± 0.9 and 21.0 ± 4.4 nM/min (Fig. 6B). In these experiments, TG (500 nM) was subsequently added to demonstrate that elevated [Ca^{2+}] induced by HE corresponded to ER-store depletion (Fig. 6, compare traces one and two). As shown in Fig. 6A (third trace) 10 μM 8-HCH induced a slight, 6.3 ± 0.9 nM (statistical significance at \(P \leq 0.05 \); mean maximal rate of ER Ca^{2+} efflux of 1.0 ± 0.5 nM/min), but measurable release of ER Ca^{2+}.

Upon addition of 500 nM TG, a further, 17.8 ± 2.7 nM mobilization of Ca^{2+} from the ER was observed. A 21.4 ± 2.2 nM increase in [Ca^{2+}], was observed with 50 μM 8-HCH (Fig. 6, bottom trace), with a mean maximal rate of ER Ca^{2+} efflux of 7.5 ± 0.5 nM/min. In cells depleted of their extracellular and oligomycin-sensitive, mitochondrial Ca^{2+} stores, the 8-HCH/TG-induced portions of the Ca^{2+} curve were less steep and less robust than were the HE/TG induced Ca^{2+} curves. This may be due to decreased quantities of sequestered Ca^{2+} in these 8-HCH treated cells compared to cells used in the HE/ER Ca^{2+} store experiments. Therefore, it is reasonable to conclude that while HE and 8-HCH both induce ER Ca^{2+} release as is the case for other tumor promoters such as TG and ionomycin, the latter compound (8-HCH) appears to reduce the capacity of ER to sequester Ca^{2+}.
Studies on the Ca\(^{2+}\) mobilizing actions of HE and \(\text{i}-\text{HCH}\) from ER Ca\(^{2+}\) store under conditions minimizing Ca\(^{2+}\) entry from outside and Ca\(^{2+}\) release from mitochondria in hepatoma cells. The ER Ca\(^{2+}\) pool was partially isolated in mouse hepatoma cells loaded with 5 \(\mu\text{M fura-2/AM}\) suspended in 3 ml of Low Ca\(^{2+}\) Medium to deplete the extracellular Ca\(^{2+}\) pool. The mitochondrial Ca\(^{2+}\) pool was depleted with 6 \(\mu\text{M oligomycin}\) 3 min after beginning fluorimetric monitoring. Cells were then treated with 10 (1st trace) or 50 (2nd trace) \(\mu\text{M HE}\) or 10 (3rd trace) or 50 (4th trace) \(\mu\text{M \text{i}-HCH}\) 13 min after beginning experiments. The ER Ca\(^{2+}\) pump inhibitor thapsigargin (500 nM) was added at 25 min to determine the extent of ER-Ca\(^{2+}\) pool depletion. Each trace represents a mean trace composed of combined traces from three or four separate experiments. *: Statistically significant at \(P \leq 0.05\).

To further elucidate the mechanism by which HE mobilizes Ca\(^{2+}\) from ER stores, experiments were performed with xestospongin C, which interacts with the IP\(_3\)/Ca\(^{2+}\) channel complex to prevent ER Ca\(^{2+}\) release, (Gafni et al., 1997), which has been extensively studied to date. As shown in Fig. 7A, 10 \(\mu\text{M xestospongin C}\) significantly attenuated the HE-mediated elevation in [Ca\(^{2+}\)], decreasing the average maximal rate of ER Ca\(^{2+}\) efflux from 10.8 to 5.4 nM/min (\(n=2\)). Further, 20 \(\mu\text{M xestospongin C}\) completely inhibited ER Ca\(^{2+}\) mobilization, but left the TG-induced release of ER Ca\(^{2+}\) unaffected. The maximal rates of ER Ca\(^{2+}\) efflux were 38.1 nM/min (\(n=2\)) for the control and 1.3 nM/min (\(n=1\)) for the 20 \(\mu\text{M xestospongin C}\) treated cells (Fig. 7B), following HE application. These data strongly suggest that HE mobilizes Ca\(^{2+}\) through the IP\(_3\) receptor/Ca\(^{2+}\) channel.

4. Discussion

An important question to address when studying the effects of extremely lipophilic organochlorine (OCs) compounds on cell Ca\(^{2+}\) is whether the increased [Ca\(^{2+}\)] induced by these agents is due to a specific or non-specific mechanism. The results obtained in the current work provide persuasive evidence that these agents modulate Ca\(^{2+}\) in liver cells via specific mechanisms, rather than non-specific ones such as cell-membrane damage. For instance, HE drastically increased Ca\(^{2+}\) influx from the extracellular pool while another equally lipophilic OC, \(\text{i}-\text{HCH}\), antagonized Ca\(^{2+}\) influx. On the other hand, both of these agents were found to act on common targets in this study, both affecting the ER to deplete its Ca\(^{2+}\) store. In these cells, however, HE produced a higher maximum level of Ca\(^{2+}\) release from either site than did \(\text{i}-\text{HCH}\).
Fig. 7. Effect of Xestospongin C on HE induced ER Ca\(^{2+}\) release. Mouse hepatoma cells were prepared as described in Fig. 2 and were suspended in 3 ml of low Ca\(^{2+}\) medium, containing approximately 100 nM free Ca\(^{2+}\) to deplete the extracellular pool. The oligomycin-sensitive, mitochondrial-Ca\(^{2+}\) pool was depleted by oligomycin (6 \(\mu\)M) addition 3 min after beginning fluorimetric monitoring (A) followed at 6 min by vehicle or 10 or 20 \(\mu\)M xestospongin C, the IP\(_3\) receptor/channel pore blocker. Addition of 50 \(\mu\)M HE was at 13 min and 500 nM thapsigargin was at 25 min. Each trace represents an average of two assays, plotted as mean maximal rates of ER Ca\(^{2+}\) efflux (B). Bars represent mean rates ± standard errors of the mean. The 20 \(\mu\)M xestospongin C-treated curve represents a single assay.

A second question to address is whether agents utilized to inactivate certain components of the cell’s calcium regulatory machinery indeed performed as expected in hepatoma cells. In this work two agents critical for our analysis were oligomycin (6 \(\mu\)M) and TG (500 nM), which have been definitively shown by other scientists to incapacitate mitochondrial ATP synthetase and inactivate the ER Ca\(^{2+}\) pump, respectively, in various cell types including those in the liver (Brustovetsky et al., 1993; Wolvetang et al., 1994). Furthermore, their actions on cell Ca\(^{2+}\) in this cell line are quite distinctive and completely independent of each other (e.g., see Fig. 4). Their actions were also found to be distinct from two other agents employed here: the receptor-mediated, Ca\(^{2+}\)-channel blocker, SKF-96365 (Fig. 5), and the IP\(_3\)-receptor/Ca\(^{2+}\)-channel blocker, xestospongin C (Fig. 7). SKF-96365 decreases Ca\(^{2+}\) influx from the extracellular pool by affecting plasma membrane Ca\(^{2+}\) channels, an effect that has been documented in many cell types, including non-excitable cells like those in the liver (Cabello and Schilling, 1993; Lenz and Kleineke, 1997). Furthermore, its close analog verapamil has been used extensively in hepatocytes (Lenz and Kleineke, 1997; Yeo and Mugiya, 1997). Therefore, all these observations support the notion that the actions of these agents are indeed specific. The Ca\(^{2+}\)-entry-inhibiting action of 8-HCH is also well known (Mohr et al., 1995) and appears to be analogous to the effect of SKF-96365. In our hands, both compounds were effective at substantially decreasing HE-induced-Ca\(^{2+}\) entry in a concentration-dependent manner. That these agents performed in precisely the manner expected in oligomycin and TG-pretreated cells further supports the notion that HE was targeting a specific cellular site.
to promote Ca2+ entry. The fact that verapamil, a Ca2+-channel blocker like SKF-96365, similarly decreased Ca2+ influx induced by HE provides additional supportive evidence (data not shown). Among standard diagnostic agents used, xestospongin C recently has been extensively utilized as a diagnostic research tool (Gafni et al., 1997; Oka et al., 2002). Criteria supporting the idea that xestospongin C produced a specific action on its intended target, the IP\textsubscript{3} receptor/Ca2+ channel, are that its action was: (1) independent of those of TG and oligomycin, and (2) concentration-dependent.

In this study, HE was found to induce Ca2+ influx in treated cells. Experiments employing cells treated with the receptor-mediated, Ca2+-channel blocker SKF-96365 (Fasolato et al., 1990; Cabello and Schilling, 1993) also support this finding. Having established that a primary action of HE on cell Ca2+ is induction of Ca2+ entry from the external Ca2+ pool, a critical question needing to be addressed is whether HE induces "capacitative" Ca2+ entry or a "non-capacitative" type of Ca2+ entry. The former is characterized by its coupling to ER Ca2+ store filling, while the latter is not (Parekh and Putney, 2005). In hepatocytes, it appears that both of these processes are operating independently (Llopis et al., 1992). Based on the observation that HE stimulates Ca2+ influx in cells depleted of their Ca2+-storage capacity by pretreatment with TG, HE appears to cause a non-capacitative type Ca2+ influx. The fact that this HE-induced-Ca2+-entry phenomenon was transient in nature (as opposed to a long-lasting effect seen after inhibition of an enzyme, transporter, or ion pump) further suggests that this was Ca2+ entry through a Ca2+ channel. Additionally, it was demonstrated here that \&-HCH, which has previously been reported to inhibit Ca2+ entry in rat basophilic leukemia (RBL) cells (Mohr et al., 1995), inhibited Ca2+ entry in 1c1c7 hepatoma cells exposed to HE. Thus, there is a good possibility that in 1c1c7 cells, these two sources of Ca2+ (i.e., extracellular Ca2+ influx store and ER Ca2+ store) are not coupled. If so, HE must be acting on these two sites independently from each other.

HE and \&-HCH were both found to induce ER Ca2+ release here, as has been reported previously in other cell types (Suzuki et al., 1988; Pessah et al., 1992; Mohr et al., 1995; Buck et al., 1999; Buck and Pessah, 1999). Additionally, HE was found in the current work to induce ER Ca2+ mobilization from ER by acting on the IP\textsubscript{3}-sensitive, Ca2+ store, possibly through the IP\textsubscript{3}-receptor/channel. This was based on data showing that HE-induced Ca2+ release from the ER was inhibited by the IP\textsubscript{3}-receptor/Ca2+-channel, pore blocker xestospongin C (Gafni et al., 1997). In contrast, \&-HCH has been shown to affect the ryanodine receptor (RyR) in cardiac myocytes (Buck et al., 1999) and in cardiac sarcoplasmic reticulum (Pessah et al., 1992) and perhaps an additional ionophore-like mechanism (Buck and Pessah, 1999). Our interpretation of the data on the overall actions of \&-HCH (see Fig. 5) is, therefore, that this compound blocks Ca2+ entry through the plasma membrane Ca2+-channel based on its similarity to SKF96365 (Fig. 5A compare the second and the fourth tracing from the top), and at the same time depletes the ER Ca2+ store (Fig. 6A bottom tracing). The action of this compound to increase modestly the internal Ca2+ was not sufficiently evaluated in this work to define the mechanism. An important observation made here is that pretreatments with 20 \&-mM xestospongin C (Fig. 7) almost completely antagonized the HE-induced ER Ca2+ release, while TG (500 nM) addition after HE, resulted in Ca2+ mobilization at levels comparable to those observed with the same treatment in control (no xestospongin C) or 10 \&-mM xestospongin C exposed cells. This suggests that the action of HE on ER Ca2+ is not mediated by effects on the ER Ca2+ pump. Another aspect of this work was to contrast the effects of a tumorigenic OC, HE, to an OC with weak or no tumorogenic activity, \&-HCH, on cellular Ca2+, because Ca2+ appears to play a role in the tumor promotion process (Verma and Boutwell, 1981; Perchellet et al., 1990; Dwivedi et al., 1994; Battalora et al., 1995; Tannheimer et al., 1997), at least in certain cases. The fact that the Ca2+ modulating agents TG and ionomycin are tumor promoters supports the notion that Ca2+ can be important in tumor promotion (Rose and Loewenstein, 1975; Thastrup et al., 1987; Perchellet et al., 1990; Iijima et al., 1991; Lazzak and Peracchia, 1993; Crow et al., 1994). Further, experiments have shown that compounds that increase [Ca2+], enhance cancer induction, while Ca2+ antagonists decrease it (McGaughy and Jensen, 1980, 1982; Sczep et al., 1985; Simpson, 1985; Tsuruo et al., 1985; Hatt, 1987).

Therefore, a compound that induces Ca2+ release from two stores, like HE, would be a more potent promoter than one that induces release a single store, like \&-HCH, assuming that increased [Ca2+], is important in tumor promotion and that the threshold for cytotoxicity is not exceeded. Further, HE, in contrast to \&-HCH, was found to mimic the action of PI agonist mitogens like epidermal and hepatocyte growth factors by inducing ER Ca2+ release followed by a Ca2+-entry phase. This ability of HE to mimic mitogens may be an important factor in explaining the greater potency of HE as a tumor promoter. Finally, we would like to point out that the main objective of this study has been to compare HE and \&-HCH from the viewpoint of...
calcium-induced, liver tumorigenesis, along the lines of the thapsigargin example (e.g., Thasuvrath et al., 1990). The question whether there could be other types of activities of HE promoting liver tumorigenesis was not addressed here.

Having clarified this point, however, we also would like to point out that, as in the case of thapsigargin and phorbol esters, Ca2+ is known to activate AP-1. There is substantial evidence demonstrating that the ability of a compound to promote Ca2+ entry, as is the case with HE, is an important mechanistic requirement linking altered Ca2+ signaling and activation of AP-1 binding to target genes. This is significant since AP-1 has been shown to be a critically important factor in chemical-induced tumor promotion (Bernstein and Colburn, 1989; Ben-Ari et al., 1992; Dong et al., 1994, 1995; Li et al., 1996).

It must be stated that, although the extent of stimulation of AP-1 by HE appears to be modest (50% to three-fold, see Fig. 3), there are precedents in literature that Ca2+-stimulated up-regulation of AP-1 activities are in the same order of magnitude (e.g., Ng et al., 2000; Hanley et al., 2000) as our observation. Knowing the importance of AP-1 protein in tumorigenesis, our observation demonstrates the functional consequence of the rise in [Ca2+]i, induced by HE.

In summary, the most conspicuous difference between the effects of HE and H-CHC on calcium homeostasis in 1c1c7 cells is that HE induces Ca2+ influx from the extracellular pool, while 8-CHC blocks it. Whether this accounts for the difference in the liver cancer potential of each compound will require future studies. An additional finding of note is that the Ca2+ influx observed here appears to be through SKF-96365-sensitive, plasma membrane, Ca2+ channels, while the ER Ca2+ release induced by HE-treatments appears to be through xestospongin C-sensitive, IP3 receptor/Ca2+ channels (see Fig. 3). Our current research findings, however, provide solid experimental evidence that Ca2+ entry is differentially affected by these two OCs with very similar chemical properties providing a future research avenue for studies into the role of Ca2+ regulation in hepatic carcinogenesis.

Acknowledgments

This research was supported by Hawaii Heptachlor Research and Education Foundation Grant #HHHERP 94-04, with additional support from the University of California Toxic Substances Teaching and Research Program’s Ecotoxicology Training Grant Program. Support was also received from the National Institute of Environmental Health Sciences Research Grants #RO1 ES05233 and #P01 ES05707, the latter through the Molecular Biology and Cellular Imaging Facility Cores.

References

