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The purpose of this study was to develop algorithms for estimating chlorophyll-a

concentration in Pensacola Bay using Landsat 7 ETM + data. The techniques

used were band ratioing and regression modelling. Pensacola Bay is located on

the west end of the Florida panhandle. As one of 39 estuaries located on the Gulf

of Mexico, Pensacola Bay is impacted largely by rivers. The Landsat ETM + data

were first geometrically rectified. Then brightness values were converted to

reflectance through the radiometric correction process. For the regression

models, logarithmically transformed chlorophyll-a was used as the dependent

variable. Single bands, band ratios and logarithmically transformed band ratios

were the independent variables. R2 values were computed and evaluated. Results

from the study indicate that the ratio of ETM + 1/ETM + 3 was the most effective

in estimating chlorophyll-a. Using this model a chlorophyll-a map was generated

for Pensacola Bay.

1. Introduction

Estuaries are dynamic environments generally defined as semi-enclosed coastal

bodies of water that have a free connection to the sea and within which seawater

mixes with fresh water resulting from land drainage (Pritchard 1967). The estuarine

environment is deemed one of the most productive and sensitive marine ecosystems

(Baban 1997, Harding et al. 2002). These environments fluctuate in physical,

chemical and biological conditions due to changes in fresh water input, tidal

regimes, temperature, salinity, seasonal variability and other chemical and physical

factors as well as human input from a multitude of effluents stemming from various

human activities such as agricultural, industrial and municipal wastes (Kennish

1986).

Phytoplankton are floating or drifting single-cell algae that are primarily

transported by water motion (Kennish 1986, Day et al. 1989). These organisms

are found in all estuarine waters and contribute greatly to overall primary

production. Due to the significant role that phytoplankton play in marine habitats,

they are used as indicators of health in systems such as estuaries. Phytoplankton

contain chloroplasts, which absorb and use the underwater light to fix carbon in the

form of carbohydrate. Among the chloroplast pigments, chlorophyll-a is common to

all phytoplankton, although two major colour phytoplankton groups – green and

brown – also contain chlorophylls-b and -c, respectively (Boney 1988). Thus,

chlorophyll-a is an indicator of the abundance of phytoplankton in the water. The

pronounced scattering/absorption features of chlorophyll-a are: strong absorption
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between 400–500 nm (blue) and at 680 nm (red), and reflectance maximums at

550 nm (green) and 700 nm (near-infrared (NIR)) (Han 1997).

Remote sensing techniques have been applied to measure chlorophyll-a by

researchers. There are some algorithms that have been developed in this

endeavour. Among these algorithms, band ratioing has proven to be advantageous

because it tends to allow compensation for variations from atmospheric influences

(Jensen 2005). In addition, the scattering and absorption characteristics of

chlorophyll-a can be studied when more than one band is used (Dekker et al.

1991). A basic principle of using band ratios is to select two spectral bands that are

representative of absorption/scattering features of chlorophyll-a (Gin et al. 2002).

The previous studies have also indicated that the wavelength range for characteriz-

ing chlorophyll-a is between 400 nm and 900 nm. Therefore, the four bands which

are mostly associated with chlorophyll-a are the blue, green, red and NIR bands

(Han et al. 1994, Han and Rundquist 1997, Gin et al. 2002). The decision involving

which bands to use is not always straightforward (Jensen 2005). Previous work has

utilized the band ratio method for various types of sensors such as spectro-

radiometers (Dekker et al. 1991, Mittenzwey et al. 1992, Gitelson et al. 1996, Han

1997, Gin et al. 2002) and airborne and satellite sensors from narrow band to

broadband sensors such as AISA (Airborne Imaging Spectroradiometer for

Applications), MODIS (Moderate Resolution Imaging Spectroradiometer),

Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM + )

(Dekker et al. 1991, Baban 1997, Zhang et al. 2003, Chang et al. 2004). In addition,

studies have been carried out in various geographical locations as well as

environmental settings ranging from lakes of various trophic status to coastal

lagoons, bays and estuaries.

Several satellite sensing systems were designed specifically for monitoring

chlorophyll-a in ocean water, such as Coastal Zone Color Scanner (CZCS, 1978–

1986) and the Sea-viewing Wide Field of view Sensor (SeaWiFS) (Jensen 2000). But

they are mostly useful for deep ocean (Case I) waters. Landsat TM/ETM + data are

useful for assessing estuarine systems for several reasons. The data are economic,

routinely available and archived. Although the spectral resolution of Landsat TM/

ETM + are modest in quantifying chlorophyll-a, the spatial resolution and coverage

are adequate for monitoring estuaries. Landsat TM/ETM + in conjunction with

in situ water sampling provides the means to establishing a relationship between

satellite-derived reflectance values and chlorophyll-a concentrations. The temporal

and spatial distribution of chlorophyll-a can therefore be mapped.

The purpose of this study is to test and evaluate various band ratios of Landsat 7

ETM + bands 1–4 and map the concentration of chlorophyll-a using the best band

ratio for Pensacola Bay, Florida.

2. Methodology

2.1 Study area

The Pensacola Bay estuarine system is located on the west end of the Florida

panhandle and is one of 39 estuaries located on the Gulf of Mexico (figure 1).

Covering 373 km2, the bay receives fresh water input from three main rivers: the

Escambia, Blackwater and Yellow Rivers. The bay has an average depth of 6 m,

with the bottom sediments predominantly made up of silts and sands (Schroeder
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and Wiseman 1999). Pensacola Bay is distinguished as a partially stratified, micro-

tidal, drowned river valley system (Schroeder and Wiseman 1999, Murrell et al.

2002). More than 18 000 km2 of watershed drain into the Pensacola Bay estuarine

system, encompassing a multitude of land uses such as mixed forests, cropland,

pastures, urban and industrial areas that introduce a high variability in water

quality. Pensacola Bay, like most estuaries, plays an important role in supporting

various marine lives.

2.2 Landsat 7 ETM + data used

A Landsat 7 ETM + scene (path: 20/row: 39; ID: 7020039000214050) of 20 May

2002, was used for this study. The image was acquired under a clear sky and windy

conditions. The wind speed during the data collection was 24 km h21. In addition to

a 15 m panchromatic band, Landsat ETM + includes seven multi-spectral bands

with 30 m spatial resolution for all bands except band 6, which is a thermal infrared

(TIR) band with 60 m spatial resolution. The visible bands are ETM + 1 (blue: 0.45–

0.51 mm), ETM + 2 (green: 0.525–0.605 mm), and ETM + 3 (red: 0.63–0.690 mm). The

NIR band is ETM + 4 (0.75–0.90 mm) and the mid-infrared bands are ETM + 5

(1.55–1.75 mm) and ETM + 7 (2.09–2.35 mm). The TIR band is ETM + 6 (10.40–

12.50 mm). The panchromatic band covers 0.52–0.90 mm.

Figure 1. Map of Pensacola Bay study area and sampling sites.
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2.3 In situ data collection

In situ data collection consisted of water sampling and hyperspectral reflectance

data collection. Both were conducted simultaneously on board the same boat on 14

and 15 May 2002, which was prior to the date when the Landsat ETM + data were

acquired. Although it is preferable to have both the in situ data collection and

satellite overpass coincide, given that no major weather events occurred between 14

and 20 May 2002 and the tidal variability for the system was minimal, it was

believed that the water quality parameters would remain relatively stable. Some

previous research has produced fair results with much larger temporally mismatched

satellite data and collected in situ data (Baban 1997).

The 16 sampling stations in the study are evenly distributed along Escambia Bay

and East Bay (figure 1) with the depths ranging from 2.1 m to 11.3 m (table 1). These

stations were selected and sampled monthly by the Gulf Ecology Division (GED) of

the US EPA. For this study, stations P1 to P9 were sampled on the first day (May

14) whereas P10 to P16 were sampled on the second day (May 15). Each sampling

station was located using the Global Positioning System (GPS) installed on the EPA

water sampling boat with a positional error of less than 10 m. At each station, water

samples were collected at the surface (at 0.5 m depth) waters. In addition to

chlorophyll-a, there were more than 20 water quality parameters collected such as

water temperature, salinity, pH, nitrate, phosphorus and other chemical measures.

This paper focuses on estimating chlorophyll-a using Landsat ETM + data only.

The hyperspectral data were collected with a hand-held spectroradiometer during

the water sampling. The analysis of the data and results are reported in a separate

paper.

2.4 Image data processing

ERDAS Imagine 8.6 (Leica Geosystems, Atlanta, USA), a digital image processing

and GIS software, was used to process the Landsat ETM + data. The image was

first geometrically rectified to UTM (Universal Transverse Mercator) projection

Table 1. Geographical locations of the 16 sampling sites.

Station Latitude
UTM

Northing (m) Longitude
UTM

Easting (m) Depth (m)

P1 30u33.133 N 3379993.2 87u12.037 W 480760.6 3
P2 30u32.368 N 3378579.8 87u09.663 W 484546.8 2.4
P3 30u30.953 N 3375962.2 87u08.577 W 486280.1 2.1
P4 30u29.621 N 3373498.2 87u07.828 W 487479.2 2.4
P5 30u27.409 N 3369413.8 87u07.925 W 487319.9 3.7
P6 30u24.908 N 3364796.0 87u08.937 W 485694.4 5.8
P7 30u23.064 N 3361399.8 87u12.585 W 479848.8 10.7
P8 30u20.549 N 3356761.5 87u14.785 W 476315.2 11.3
P9 30u19.659 N 3355132.8 87u18.510 W 470343.8 6.7
P10 30u34.137 N 3381832.5 86u59.931 W 500110.5 2.7
P11 30u31.253 N 3376505.8 87u01.670 W 497329.8 2.1
P12 30u28.812 N 3371997.8 87u01.985 W 496824.9 2.4
P13 30u26.949 N 3368556.8 86u58.600 W 502240.0 2.7
P14 30u25.690 N 3366231.8 87u01.041 W 498333.9 3.4
P15 30u25.051 N 3365055.0 87u54.200 W 491324.4 6.4
P16 30u20.623 N 3356884.0 87u09.575 W 484662.5 5.8
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(Zone 16; Datum: WGS84). The image was rectified using USGS 7.5 minute

quadrangle topographic maps. More than 30 ground control points (GCPs) were

selected from both the image and topo maps. For the spatial interpolation portion

of the geometric correction, a first-order, affine transformation was used. The RMS

error was less than 0.5 pixel. For intensity interpolation, the nearest-neighbour

interpolation was adopted in order preserve the pixel values in the scene (Jensen

2005). Next, radiometric correction of the Landsat ETM + image was performed

based on the Chavez (1996) COST method. Brightness values (BVs) were converted

to at-sensor reflectance values in this process.

The geometrically and radiometrically corrected Landsat ETM + image was used

in the analysis. A 363 window was established around each sampling pixel based on

the UTM coordinates determined with a GPS during the water sampling. The mean

reflectance of the 363 window was extracted and used in the modelling process.

There are two primary reasons for using a 363 window instead of a single pixel: (1)

because of possible errors in the geometric correction and the dynamics of water

bodies, the use of a pixel window compensates for errors due to disparity of

coordinates that may occur by using a single pixel; and (2) the pixel windows give an

estimate of spatial variability. This technique was used widely in other previous

research efforts (Baban 1997, Woodruff et al. 1999, Braga et al. 2003) and the size of

a 363 window was suggested as an optimal one (Reddy 1997).

The band ratios among the first four ETM + bands as proposed and tested in the

literature were computed (Gitelson et al. 1996). In the regression models established,

the logarithmically transformed chlorophyll-a concentration was used as a

dependent variable (Chang et al. 2004). The three types of independent variables

were tested: reflectance of a single band, logarithmically transformed band ratios,

and ratios of logarithmically transformed single band. R2 values were computed.

From the best results, a map was generated showing the chlorophyll-a distribution

and concentration in Pensacola Bay.

3. Results and discussion

Table 2 shows the laboratory-measured chlorophyll-a concentration for each

sampling station. The mean chlorophyll-a concentration of 16 sampling stations

was 7.41 mg l21 and a relatively high standard deviation (5.89 mg l21) was recorded,

which indicated the spatial variability of chlorophyll-a concentration. Escambia Bay

had higher chlorophyll-a concentration (sampling stations P1–P9) than East Bay

(sampling stations P10–P16). Higher concentrations of chlorophyll-a were also

found in the upper part of the estuary, e.g. P2, P3, P10 and P11, where rivers tend to

bring in nutrients. The highest concentration (23.23 mg l21) was recorded at station

P2, which is located near the mouth of Escambia River while the lowest amount of

chlorophyll was found at station P9 (1.14 mg l21) that is situated at the corridor of

Pensacola Bay to the Gulf of Mexico.

Table 3 shows the average reflectance computed from a 363 window surrounding

each sampling station. These values were used in building band ratio models. The

first type of models that were established were the single band regression models,

with reflectance and logarithmically transformed reflectance being the independent

variable respectively, and logarithmically transformed chlorophyll-a concentration

being the dependent variable (Chang et al. 2004). The low R2 values indicated that

there was little or no correlation between the reflectance of a single band and

chlorophyll-a (table 4).
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The next group of regression models tested were ones with chlorophyll-a (again

logarithmically transformed) as the dependent variable and band ratios as the

independent variable (table 5). As expected, the association between the dependent

and independent variables became stronger as compared with the single band model

Table 2. Laboratory-measured chlorophyll-a concentrations.

Station Chlorophyll-a (mg l21)

P1 8.99
P2 23.23
P3 18.20
P4 12.07
P5 7.12
P6 4.08
P7 3.32
P8 2.52
P9 1.14
P10 6.90
P11 7.32
P12 4.70
P13 4.70
P14 5.72
P15 4.85
P16 3.70
Mean 7.41
Std. Dev. 5.89

Table 3. Averaged reflectance from a 363 window for each sampling station.

Station ETM + 1 ETM + 2 ETM + 3 ETM + 4

P1 0.1253 0.0982 0.0751 0.0680
P2 0.1374 0.1117 0.0932 0.0767
P3 0.1392 0.1134 0.0907 0.0776
P4 0.1370 0.1113 0.0863 0.0727
P5 0.1391 0.1109 0.0832 0.0713
P6 0.1423 0.1128 0.0838 0.0734
P7 0.1424 0.1113 0.0841 0.0767
P8 0.1412 0.1083 0.0800 0.0741
P9 0.1448 0.1090 0.0794 0.0780
P10 0.1312 0.1021 0.0802 0.0728
P11 0.1334 0.1050 0.0820 0.0717
P12 0.1397 0.1127 0.0889 0.0733
P13 0.1438 0.1172 0.0909 0.0762
P14 0.1487 0.1237 0.1001 0.0811
P15 0.1428 0.1127 0.0884 0.0788
P16 0.1403 0.1084 0.0781 0.0683

Table 4. R2 for single band models.

Regression models ETM + 1 ETM + 2 ETM + 3 ETM + 4

log(chl-a)5y0 + a*bj 0.21 0 0.14 0.001
log(chl-a)5y0 + a*log(bj) 0.21 0 0.14 0.001
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(also table 4). Notice that the best regression model was the one with the form of

log chl-að Þ~y0za� log bj

�
log bk

� �
ð1Þ

Where chl-a is chlorophyll-a concentration (mg l21); bj and bk are Landsat ETM +
bands 1–4.

Another observation that can be made from table 5 is that the ratio between

ETM + 1 and ETM + 3 seemed to be the best of all six ratios. Figure 2 summarizes

the statistical results of using the regression model described in equation (1) and the

ratio of ETM + 1/ETM + 3. The R2 value was 0.67 (p,0.0001) and the standard error

of estimate was 0.19 (1.55 mg l21). The principle behind this ratio is that both bands

correspond to chlorophyll-a absorption. As chlorophyll-a increased, the reflectance

in both ETM + 1 (blue) and ETM + 3 (red) decreased. But the rate of decrease in

ETM + 3 was faster than the one in ETM + 1. Since the reflectance of ETM + 3 (0.63–

0.69 mm) is also affected by inorganic suspended sediments and dissolved organic

matter, the ratio of ETM + 1 and ETM + 3 may work effectively in estimating

chlorophyll-a only when the chlorophyll-a concentration is higher than a certain

level and the turbidity of water is relatively low. Gitelson et al. (1996) found the

ratio of TM3/TM1, a reciprocal ratio of TM1/TM3, was effective in estimating

chlorophyll-a concentrations greater than 3 mg m23. A correlation coefficient, R,

greater than 0.74 between TM3/TM1 and chlorophyll-a was produced.

Using this model, a chlorophyll-a concentration map was produced using

ERDAS Imagine software (figure 3). The map characterizes the spatial pattern of

chlorophyll-a in Pensacola Bay. Using chlorophyll-a as an indicator of phyto-

plankton, the map indicated that higher abundance of phytoplankton occurred in

the upper part of Escambia Bay, where Escambia River enters the bay. A similar

pattern was also found in East Bay. Higher chlorophyll-a concentrations were also

Table 5. R2 for band ratio models.

Regression models 1/2 1/3 1/4 2/3 2/4 3/4

log(chl-a)5y0 + a*(bj/bk) 0.28 0.45 0.23 0.49 0.01 0.24
log(chl-a)5y0 + a*log(bj/bk) 0.45 0.58 0.16 0.55 0 0.42
log(chl-a)5y0 + a*(logbj/logbk) 0.57 0.67 0.26 0.58 0.01 0.41

Figure 2. The regression model using the ratio of ETM + 1/ETM + 3.
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found along the shore lines. It is believed to indicate the abundance of certain types

of benthic algae.

4. Conclusions

Chlorophyll-a is an indicator of the abundance of phytoplankton, which make an

important contribution to overall primary productivity of coastal waters. Therefore,

using remote sensing techniques to estimate and map chlorophyll-a concentration is

a significant undertaking for improving the monitoring and assessment of water

quality in estuaries.

Figure 3. The chlorophyll-a map of Pensacola Bay.
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Although the spectral resolution of Landsat 7 ETM + is relatively low in

estimating chlorophyll-a compared with some of the other sensing systems, the ratio

of ETM + 1/ETM + 3 seemed to offer a practical solution in estimating and mapping

chlorophyll-a. There are, however, limits to this study, such as the fact that it was

based the data collected on only one occasion, and 16 sampling stations.
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