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1. Introduction

Some physical–numerical models predict that
the doubling of CO

2
 gas in the atmosphere will

lead to an increase in tropospheric temperatures
and a decrease in stratospheric temperatures. To
investigate this hypothesis and describe the cli-
mate, the National Climatic Data Center (NCDC)
and the All-Union Research Institute of Hydrom-
eteorological Information, Russia, have produced
a worldwide upper-air dataset called CARDS
(Comprehensive Aerological Reference Data Set)
(Eskridge et al. 1995a,b) for the period 1946–94.
This dataset has been compiled from 20 datasets
(R. Eskridge et al. 1997, manuscript submitted to
Bull. Amer. Meteor. Soc.) and quality controlled by
a complex quality control (CQC) developed for this
project (Alduchov and Eskridge 1996).

Radiosonde data contain instrument, systematic,
and gross errors. Gross or rough errors arise pri-
marily in the transmission of the data or in later
processing of data (Gandin 1988). The CQC pro-
gram developed at NCDC can detect these gross
errors and either correct or modify approximately
50%–75% of them. Systematic errors in time series
data are due primarily to changing radiosonde sen-
sors or data reduction procedures. Systematic er-
rors can be detected using station histories,
mathematical–statistical methods (Zurbenko et al.
1996; Zhai and Eskridge 1996), and physical mod-
els of radiosonde temperature sensors (Luers and
Eskridge 1995; Luers 1996). Systematic errors can
be minimized (corrected) if station history data are
well documented and readily available. Instrument
and observation errors tend to be normally distrib-
uted with a zero mean; that is, they have no bias.
Instrument or observational errors cannot be re-
moved from the data and act as noise. Hence, av-
eraging the data or applying an appropriate filter
can minimize these errors.

The presence of various scales of motion in time
series can complicate the analysis and interpretation
of long-term trends in meteorological variables. In
the following, it will be shown that high-frequency
(short term) variations composed of meso- and
synoptic-scale motions act like noise in time series.
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The yearly cycle, which represents the seasonal
variation, is not regular and the year to year variation
in seasonality is so large that it must be accurately
removed in order to perform statistical tests, which
require that the data are statistically independent
and identically distributed for detecting long-term
trends in the data. Following the Rao and Zurbenko
(1994) method, it is assumed that the time series
of a meteorological variable can be partitioned as

X(t) = e(t) + S(t) + W(t) + T(t) + E(t), (1)

where X represents the radiosonde time series data,
e represents the long-term signal, S represents the
seasonal cycle, W represents the meso- and
synoptic-scale variations, T represents turbulence,
E(t) is the instrument error, and t is time. In upper-
air data, the usual frequency of observations is 12 h.
This means that energy due to turbulence will not
be correctly resolved and will be falsely repre-
sented in lower frequencies (aliasing). The Nyquist
frequency for radiosonde data is 24 h. Small meso-
scale flow features will not be adequately sampled
by the radiosonde network and their energies are
also folded into lower frequencies. Hence, the T(t)
term can be dropped from (1). Random and sys-
tematic errors, represented by E(t), are ignored in
this paper.

The model presented in (1) is based on the as-
sumption that there are gaps in the spectra.
Synoptic-scale events have a timescale ranging
from 2 days to 3 weeks. The next scale is the sea-
sonal with a period of 1 yr, and finally scales
longer than a year. Figure 1 shows the 850-mb
temperature data from Hong Kong as a raw time
series, the separated short term, and seasonal com-
ponents. The method used to create Figs. 1b and
1c is presented in section 2.

2. Separation of synoptic and seasonal
components in time series

The PEST algorithm (Brockwell and Davis 1991)
and the monthly anomaly technique (Wilks 1995)
are two methods that are commonly used to sepa-
rate various timescales in time series data. In this
paper, it will be shown that these two techniques
have shortcomings. The wavelet transform and KZ
filter methods are shown to be capable of separat-
ing the various timescales with minimal errors.

The Kolmogorov–Zurbenko (KZ) filter (Rao and
Zurbenko 1994; Zurbenko et al. 1996) is based on
an iterative moving average that removes high-
frequency (with respect to the window size) varia-
tions from the data. The moving average is
computed by

y
q

xi i jj q

q
=

+ +=−∑1

2 1 , (2)

where 2q + 1 is the length of the filter window, y
i

becomes the input for the second pass, and so on.
By modifying the window length and the number
of iterations, the filtering of different scales of
motion can be controlled. To filter all periods of
less than P days, the following criterion is used:

D N P× ≤
1

2 (3)

where D (D = 2q + 1) is the window size in days
and N is the number iterations. A more detailed de-
scription of how one chooses the parameters P and
N is provided by S. Rao et al. (1997, manuscript
submitted to Bull. Amer. Meteor. Soc.).

,

FIG. 1. 850-mb temperature data from Hong Kong: (a) the raw
data, (b) the short-term component, and (c) the seasonal component.
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Recently, Lau and Weng (1995) applied the wave-
let transform technique to climate data. The wave-
let transform was shown to be a powerful method
for separating different timescales in time series.
This paper provides a comparison between the re-
sults of wavelet transform and the KZ filter method.

Lau and Weng (1995) describe the wavelet
transform as a generalized form of the windowed
Fourier transform. A wavelet transform uses local
base functions (called wavelets) that can be sepa-
rately stretched and translated in frequency and
time. In this way, the wavelets can be scaled to
match the low- and high-frequency signals with the
least number of base functions (see Lau and Weng
1995 for details).

PEST (described in detail by Brockwell and
Davis 1991) produces a seasonal adjustment that
begins with the difference between the raw data and
a 1-yr moving average. The difference, which con-
tains seasonality but no long-term trend, is then
averaged by season. For example, all January dif-
ferences (January raw data minus 1-yr moving
average value for January) are averaged, produc-
ing a seasonal adjustment that is unchanged from
year to year. The seasonal adjustment is subtracted
from the raw data, leaving behind short-term fluctua-
tions plus long-term trend. A problem with data sea-
sonally adjusted using PEST is the serial correlation
in the data introduced by the moving average.

A fourth way of removing both short-term and
seasonal variations from time series is to compute
perturbations or anomalies (Wilks 1995). An
anomaly is the departure of a variable from its long
period average value for the given location. This

can be accomplished in several ways. First, the
averages for each month or season can be calcu-
lated for the period of record. Then, the deviation
of each data point from the calculated average form
a time series. A second method is to calculate a
moving average of 30 (90) days simulating a
monthly (seasonal) average and calculate the de-
viations from this average. This second method
permits the study of the characteristics of anoma-
lies. Time series of anomalies are approximately
stationary.

In the following analysis, high-frequency
meso- and synoptic-scale variations are removed
by smoothing the data with the KZ filter for a win-
dow size of 15 days and 5 iterations. This filter will
remove all cycles of less than 33 days. Figure 2
shows the spectra of the unfiltered temperature
data from Hong Kong for 850 mb, and Fig. 3
shows the spectra of the data filtered with KZ(15,5).
The energy levels in periods less than 33 days have
been reduced by factors of 10–100. The lag
autocovariance of the Hong Kong temperature data
(raw); KZ(15,5) time series, which is identified as
KZ seasonal (see Fig. 1c); and the time series cre-
ated by subtracting the KZ(15,5) series from the
original data (short term, see Fig. 1b) are shown in
Fig. 4a. The autocovariance is plotted in Fig. 4a
because it is additive, whereas the autocorrelation
is not. Lag autocorrelation plots are similar to the
lag autocovariance plots. Fig. 4a shows that the
original data have a nonzero lag autocovariance
out to 90 days (seasonality) and the KZ(15,5) time
series has a similar lag correlation past 30 days.
When the KZ(15,5) series is subtracted from the

FIG. 2. Power spectra of the 850-mb temperature data from
Hong Kong.

FIG. 3. Power spectra of the 850-mb temperature data after being
filtered with KZ(15,5). Frequencies greater than 33 days are left.
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original time series, it contains only high-frequency
data and its lag correlation goes to zero rapidly.
Hence, the short period cycles of less than 25 or
30 days resemble random fluctuations (white
noise). Meso- and synoptic-scale motions are con-
tained in these frequencies. A lag correlation or
covariance of a time series containing just the sea-
sonal component should be sinusoidal in shape,
and it is (see Fig. 1c). Figure 4b shows plots of the

lag covariance of the raw data, wavelet seasonal,
and wavelet short-term component. The curves in
Figs. 4a and 4b are very similar.

The yearly cycle and all smaller timescales can
be removed by picking a larger window size. The
results from the KZ filter with three iterations and
a window of 365 days for the temperature data are
shown in Fig. 5; the resulting time series contains
cycles with periods greater than 1.7 yr. A linear fit
to these data will reveal any long-term trend. It
should be noted that a trend may be created or af-
fected by instrument changes, changes in data re-
duction techniques, and actual climatic variation.
The change in observation time from 0300 and
1500 UTC to 0000 and 1200 UTC on 1 July 1957
is evident in Fig. 5. In 1957, there is a temperature
decrease of 2°C.

To isolate the seasonal signal, the long-term sig-
nal and meso- and synoptic-scale variations have
been removed from the Hong Kong time series

FIG. 4. Lag autocovariance of the time series of the raw data, the
short-term component, and the seasonal component.

FIG. 5. Time series in which short-term and seasonal frequen-
cies have been removed.

FIG. 6. Power spectrum for the KZ filter method in (a) and the
wavelet transform method in (b) after the short-term and seasonal
components have been removed.
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using the KZ filter method and the wavelet trans-
form method. The power spectrum of filtered tem-
perature time series are shown in Figs. 6a and 6b
for the KZ and wavelet transform methods, respec-
tively. The wavelet transform has isolated the sea-
sonal cycle cleanly from the long-term signal, but
not the meso- and synoptic scales. The spikes for
periods below 100 days (high frequencies) indicate
some meso- and synoptic-scale signals are retained.
The KZ method has eliminated the meso- and syn-
optic scales cleanly as can be seen by comparing
Fig. 6a to Fig. 2. It has isolated the seasonal signal
from the long-term signal. The KZ method appears
to be more effective at removing the meso- and syn-
optic scales from the time series than the wavelet
transform. The power spectra for periods greater than
700 days are similar for the wavelet and the KZ filter
with the variance being somewhat lower for the KZ

method. The separation of long-term phenomena
from other parts of the spectrum are important in
order for detecting long-term trends. Since further
study into filter performance with respect to the
separation of low-frequency phenomena from
long-term trends is needed, DiRienzo et al. (1997)
are examining a promising new technique for de-
tecting small features of power spectrums.

The effectiveness of the KZ and wavelet trans-
form methods in separating different timescales is
shown in Figs. 7a and 7b. In these two plots, the
seasonal component is plotted against the short-
term component after spectral decompositions of
time series. The correlation between the short-term
and seasonal time series produced by the KZ
method is 0.057, and the correlation between the
two time series produced by the wavelet transform
is −0.0017. When the high-frequency and seasonal
components are cleanly separated, the correlation
between the time series comprising high-frequency
and seasonal components should be near zero, and
both are. The scatterplots are very similar, show-
ing that both the seasonal and synoptic scales have
been correctly isolated by these two methods.

A simulated anomaly can be created with the
KZ filter by subtracting from the original time se-
ries a time series created with a window of 30 days
and one iteration, KZ(30,1). The spectra of the
KZ(30,1) series are shown in Fig. 8. This figure
shows that the amplitude of the high-frequency
cycles have been reduced for all periods below 30
days. The spectra shows various peaks of energy
at periods below 40 days. Figure 9a presents the

.

(a)

FIG. 7. Plot of the seasonal temperature component against the
(a) short-term temperature component for the KZ filter and (b) the
wavelet transform method.

(b)

FIG. 8. Power spectra for the time series KZ(30,1) of the simu-
lated anomaly method.
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lag autocorrelation for the temperature data, the data
filtered by PEST, anomalies, and [original time
series data—KZ(15,5)] identified as KZ in the plot.
The problem in working with the unfiltered data is
clearly shown by the cyclic nature of the lag
autocorrelation. The three filtering methods clearly
remove part of the seasonal cycle. In Fig. 9b, the
scale is expanded to better show the behavior of
the lag autocorrelations. Figure 9b shows that data
filtered by PEST are cyclic with a 12-month cycle.
The autocorrelations for PEST have a maximum of
about 0.25 at 24 and 36 months. While anomalies
do not show a 12-month pattern like PEST, the time
series have a lag autocorrelation of about 0.1,
which seems to be increasing with lag. The time
series in which the seasonal cycle was removed with
the KZ filter is clearly superior to the other two
methods; the lag correlation is about 0.025.

3. Transfer functions

The behavior of the various filters can be ex-
amined by the use of transfer functions (Lumley
and Panofsky 1964). A transfer function is defined
using the convolution theorem and the definition
of spectra by

ψ ω ω φ ω( ) = ( ) ( )H , (4)

where φ is the spectral density of the original data,
ψ is the spectral density of the filtered data, H is
the transform function of the filter, and ω is the fre-
quency. When H = 1, the data are passed without
modification, and when H = 0, the frequency is re-
moved. A perfect filter would be a step function
passing frequencies below a specified frequency
ω

1
 and completely attenuating those above.
The behavior of the KZ filter is shown in

Fig. 10. The KZ(30,1) time series shows ringing of
the signal, which explains the cyclic behavior
found in Fig. 8. This ringing is barely detectable
in the KZ(30,2) time series and is essentially zero
in KZ(30,3). Figure 10 shows why the meso- and
synoptic scales are removed with a KZ(15,5) filter
rather than a KZ(33,1) filter. The transfer functions
for the KZ(182,3) filter and the KZ(365,3) filter are
shown in Fig. 11. Here KZ(365,3) removes frequen-
cies higher than about 1000 days, whereas KZ(182,3)
removes frequencies higher than about 500 days.

Figure 12a shows the transfer functions for
PEST, KZ(30,1), and KZ(15,5), which all filter out

FIG. 10. Transfer function for the KZ filter with a window size
of 30 days and the number of iterations varying from one to eight.

FIG. 9. (a) Lag correlation of raw data, PEST, KZ(15,5), and
anomalies. (b) Autocorrelations with an expanded scale.
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the meso- and synoptic scales. The transfer func-
tion for the PEST procedure contains a number of
spikes, since it deals with monthly averaged data
and the transfer function is created based on daily
data. The spike in the transfer function near 365
days results in the passing of seasonal signal and
explains the 12-month oscillation shown in Fig. 9.
The spikes at the higher frequencies mean that some
synoptic-scale signals are being passed by the filter.

Monthly anomalies can be defined for a vari-
able X(t) observed for n years in the following way.

1) Apply KZ
30,1

 to X(t), then define B
30,1

(t)
= KZ

30,1
{ X(t)};

2) Calculate an average baseline for the n years by
KZ

30,1
,

AvB z
n

B z k
k

n

30 1 30 1
0

11
365, ,( ) = +( )

=
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∑ , (5)
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The REM function or remainder function is
based on the remainder theorem. If a and b are
integers and b > 0, there exist integers q and r
such that a = qb + r. Here a = 365q + r and r
= REM (a,365).

3) Define anomalies A(t) as

A t B t B t

I B t

( ) = ( ) − ( )
= −( ) ( )

30 1 30 1

30 1

, ,

,

Av

Av
(7)

The transfer function is calculated as the prod-
uct of two transfer functions for KZ

30,1
 and {I − Av},

where I is the identity function. The first is given by

sin

sin

2

2 2

30

30

πω
πω

( )
( ) (8)

and is shown in Fig. 10. The second transfer func-
tion is given by

[1 − h(ω)]2, (9)

where H(ω) = h2 (ω) is the transfer function given
by

H
n

n
ω πω

πω
( ) = ( )

( )
sin

sin

2

2 2

365

365 , (10)

where ω has units of days per period. The transfer
function of anomalies has a very complicated mix-
ture of low and high frequencies and is shown in
Fig. 12b.

Traditionally, anomalies A(t) are displayed at
the 15th of the month, which keeps the same por-
tion (∼5%) of the noise as the procedure above.
Noise increases the variability of the output and un-
certainty of inferences made with the data. The
transfer function shows that anomalies distort fre-
quencies near zero and therefore limit its use in
studying long-term trends.

4. Applications of the KZ filter

When the timescale of a problem is known, ap-
plication of the KZ method is straightforward. For
example, to isolate the annual cycle for time series
X(t) of hourly, twice daily, or daily meteorological
data, calculate a filtered time series using the
KZ(15,5), denoted KZ(15,5), which removes pe-
riods less than 33 days and the filtered time series

FIG. 11. Transfer function for the KZ filter with window size of
182 and 365 days and three iterations.

.

.
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using KZ(720,3), which contains only long-term
signals. The time series KZ(15,5) − KZ(720,3) will
contain primarily the yearly cycle. When the
timescale is not known, it can be determined as
demonstrated in the next section.

a. Determination of length and timescales
Eastern U.S. surface temperature data have

been used in the following analysis to determine
the length and timescale. The various scales of mo-
tion embedded in the temperature time series data
at each station have been separated using the KZ
filter. Once this is accomplished, one has a time se-
ries of the variables representing a particular physi-
cal forcing element. For example, the information
in the synoptic signals W(t) at different locations
can be used to characterize the space scale associ-
ated with the synoptic forcing. The relationship

among W(t) components in temperature data is ex-
tracted from the correlation matrix and examined
using isolines of correlation (Fig. 13). The space
scale for this physical (synoptic scale) forcing is on
the order of 1000 km (see Fig. 14), which is the e-
folding distance for the spatial correlation. One can
address the timescale of the W(t) components ei-
ther by applying a mean wind speed to the spatial
scale or by examining the temporal (serial) corre-
lation in W(t). Based on the former, mean wind
speeds in the range of 8 to 20 km h−1 lead to time-
scales of 2–5 days. In the case of temporal corre-
lations, since the W(t) resemble a Markov process
with 1-day correlations in the range 0.4–0.8, the
e-folding time ranges from 1 to 4.5 days across the
continental United States (S. Rao et al. 1997, manu-
script submitted to Bull. Amer. Meteor. Soc.). The
e-folding time in Washington, D.C., temperature
data is 1.9 days.

b. Quality control of upper-air data
Near-zero autocorrelations among the values in

the high-frequency component (Fig. 4) suggest that
the short-term variation in temperature time series
could be modeled as white noise. Following Rao

(b)

FIG. 12. (a) Transfer function for the PEST method, simulated
anomalies (KZ(30,1)), and KZ(15,5). (b) Transfer function for
anomalies method.

FIG. 13. Isolines of correlations depicting the spatial extent of
the synoptic-scale forcing in the surface temperature, extracted by
correlating W(t) at Washington, D.C., with W(t) at other stations.

(a)
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et al. (1996), the temperature time series data can
be represented as

T(t) = baseline(t) + N(0, σ 2), (11)

where N is noise with a zero mean, standard de-
viation σ, and

baseline(t) = e(t) + S(t) (12)

= KZ
15, 5 

.

Equation (12) means that for a given time, t, T(t)
is approximately normal with mean baseline(t) and
standard deviation σ. For a short time interval, ∆t,
however, we can only speak about the multivari-
ate distribution of T(∆), or its posterior distribution
when the baseline is known. Because the baseline
changes very slowly, it is easily predictable for a
particular day or short time interval for which one
may suspect data quality; that is, the baseline can
be interpolated for short periods. By imposing
white noise on a given baseline (actual or interpo-
lated), the distribution of T(t) or T(∆) can be de-
scribed via simulation and used to construct
confidence intervals. To illustrate, Eq. (11) was
used to simulate the entire period of record 1000
times. The temperature distribution and associated
95% confidence interval are shown in Fig. 15 along

with the observed data distribution. This approach
can be followed for a particular day or short interval
to supplement the CQC methodology mentioned
earlier and improve the quality of radiosonde data.

c. Calculation of trends
The KZ filter, anomalies, and PEST were applied

to the Hong Kong temperature data to estimate
long-term trends. Confidence intervals were esti-
mated for each filter. The KZ filter was applied with
a 730-day window and three iterations to remove
all cycles less than 1266 days. Anomalies were
calculated by removing the long-term seasonal
components from the monthly averaged data.
PEST data are calculated by removing the seasonal
components from the monthly averaged data (see
section 2). Linear regression curves as well as the
95% confidence interval are then calculated by (13)
and (14),

Y(t) = at + b, (13)

where Y is the filter data and t is time. The width of
a 95% confidence interval for a is given by

2 0 975

2
1

2

1

2 2
1

2

t
Y at b

n t
f

t

. ,

− +( )( )[ ]
−( )[ ]

∑
∑ µ

, (14)

FIG. 14. The decay of correlation among W(t) components as a
function of downwind distance from Washington, D.C. The e-
folding distance is about 1000 km, representing the spatial scale of
synoptic forcing in the surface temperature data.

FIG. 15. The cumulative distribution of the simulated tempera-
tures for Hong Kong at 1000 mb along with the 95% confidence
interval. Also shown in the diagram is the distribution of the mea-
sured values.
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TABLE 1. Values of the long-term trend and confidence intervals
for the KZ filter, PEST, and anomalies methods.

KZ filter 0.024 yr−1 0.00177

Anomalies 0.025 yr−1 0.0260

PEST 0.025 yr−1 0.0270

Long-term 95% confidence
trend  interval

where f is the degrees of freedom of the correlated
series Y, given by (Loftis and Ward 1979) as

f
n

n
n i i

i

n=
+ −( )

=

−

∑1
2

1

1

ρ . (15)

The ρ
i
 are the autocorrelations at lag time I, and n

is the sample size. When n = 10 220 (28 yr of data),
and Y is filtered with a KZ(730,3), f = 3.98, and
t
0.95,3.98

 = 2.86. Figure 16 shows the data from KZ
filter, anomalies, PEST, and the regression lines.
Although the magnitude of the long-term trend es-
timated by the three methods is similar, the KZ fil-
ter provides estimates with much higher (about 10
times) confidence than the other methods (see
Table 1).

5. Implications and conclusions

The KZ filter can be used to calculate the con-
tribution of various scales of motion to the total
variance of the temperature data. For example,
analyses of the 850-mb temperature data from
Hong Kong show the following.

• The contribution of the short-term component
(meso- and synoptic scales) to the total variance
is the variance of the [original − KZ(15,5)] time
series divided by the total variance. This is
about 20% for the Hong Kong temperature data.
The total variance is that calculated from the
unfiltered temperature data.

• The contribution of the long-term component
(trend) to the total variance is the variance of
the KZ(365,3) series divided by the total vari-

ance. This is about 3% for the Hong Kong tem-
perature data.

• The contribution of the seasonal component to
the total variance is the variance of the [raw
data—meso- and synoptic scales—long term]
time series. This is about 77% for the Hong
Kong temperature data.

Clearly, it is essential to cleanly separate the
meso- and synoptic scales and seasonal variations
from the data to calculate long-term trends correctly.
Anomalies and PEST will not adequately remove
these frequencies.

The results presented in this paper indicate that
the KZ filter method has the same level of accu-
racy as the wavelet transform method. The KZ fil-
ter can be applied directly to datasets containing
missing observations because missing values are
simply left out of the computation, whereas anoma-
lies, PEST, and wavelet transform methods require
that data be created to fill gaps. Also, the KZ filter
is very easy to use. Among the four methods ex-

FIG. 16. Filtered time series and the linear trend for (a) KZ method,
(b) anomalies, and (c) PEST.
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amined here, the KZ filter is the method of choice
to detect and track changes in time series of climate
variables because of its simplicity and accuracy.
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