
Ecological Modelling 175 (2004) 25–54

Modeling the dynamics of three functional groups
of macroalgae in tropical seagrass habitats�

Patrick D. Biber∗, Mark A. Harwell1, Wendell P. Cropper Jr.2

Department of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science,
University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33129, USA

Received 12 December 2002; received in revised form 3 September 2003; accepted 27 October 2003

Abstract

A model of three functional groups of macroalgae, drift algae, rhizophytic calcareous algae, and seagrass epiphytes, was devel-
oped to complement an existing seagrass production model for tropical habitats dominated byThalassia testudinum(Turtle-grass).
The current modeling effort simulates annual biomass dynamics for each of the three functional groups under a variety of stress
regimes imposed by nutrient-laden freshwater discharges into a well-flushed coastal bay in South Florida.

The model is parameterized based on multiple years of experimental data collected from Biscayne Bay, as well as literature val-
ues reported for other Florida and Caribbean seagrass habitats. Calibration of the model yields a good fit of predicted-to-observed
biomass (r2 > 0.85) for sheet-flow and oceanic-influenced sites, but a poor fit (r2 = 0.13) under canal-influenced conditions.
This is hypothesized to be related to the lack of adequate observed data on seagrass epiphyte dynamics to parameterize the model.

Sensitivity analysis showed that the model is easily perturbed by changes in intrinsic growth parameters of the algae (daily
growth rate, mortality rate, carrying capacity), while it is much less sensitive to changes in the functional form of the response
curves that are used to characterize the stress tolerances of the algae to light, temperature, salinity, and nutrient conditions. This
model is considered suitable for use in seagrass habitats similar to those occurring in South Florida, as these are the conditions
to which the model was calibrated.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Seagrass habitats exhibit dynamic complexity of the
kind that makes ecological models difficult to val-
idate across the entire range of real-system behav-
iors (Patten and Jørgensen, 1995). Seagrass meadows
are highly productive and ecologically important habi-
tats within South Florida’s estuaries and coastal la-
goons, as well as throughout the world (Zieman, 1982;
Larkum et al., 1989; Bortone, 2000). The seagrass
community of the South Florida region is structurally
and functionally complex. The dominant species of
seagrass is generallyThalassia testudinum(Turtle-
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grass), whereasHalodule wrightii (Shoal-grass) and
Syringodium filiforme(Manatee-grass) may co-occur
or dominate in some areas (Zieman, 1982; Fong and
Harwell, 1994). The seagrass community also includes
many species of algae that can be grouped into a few
functional groups: drift algae, rhizophytic algae, at-
tached (psammophytic) algae, and seagrass epiphytes.
Each of these functional groups comprises numerous
species that may be seasonally abundant (Biber, 2002).

Benthic macroalgae, such as rhizophytic algae in
the generaPenicillus, Halimeda, andCaulerpa are
important in stabilizing sediments, thereby facilitat-
ing seagrass succession (Williams, 1990). In addition
to these benthic species, macroalgae such asLauren-
cia, Polysiphonia,Chondria, Hypnea,Dictyota, and
Gracilaria are present in seagrass beds as large clumps
of detached drift algae (Josselyn, 1977; Williams-
Cowper, 1978; Benz et al., 1979; Virnstein and
Carbonara, 1985; Bell and Hall, 1997; McGlathery,
2001). Epiphytic micro- and macroalgae, especially
filamentous and sheet-like reds and greens, grow at-
tached to the seagrass blades (Humm, 1964; Jensen
and Gibson, 1986; Moncrieff et al., 1992). Epiphytes
and drift algae potentially shade light to the seagrass
blades and thereby may reduce productivity of the
seagrasses (Jones, 1968; Bulthuis and Woelkerling,
1983; Jensen and Gibson, 1986). Recent attention has
focused on the detrimental effects of blooms of drift
algae and epiphytes, which are hypothesized to be
related to eutrophication in many shallow nearshore
seagrass environments (Valiela et al., 1997; Hauxwell
et al., 2001; McGlathery, 2001).

The importance of biotic and abiotic factors control-
ling the distribution and abundance of the macroalgal
components of the seagrass ecosystem is still largely
unknown, althoughFong and Harwell (1994)devel-
oped a model to examine some mechanisms control-
ling spatial and temporal variability in the structure of
seagrass communities. Their seagrass system model
simulates dynamic changes in biomass of the three po-
tentially dominant seagrass species in South Florida:
Thalassia,Halodule, andSyringodium, as well as two
algal groups: epiphytes and rhizophytes. Biomass of
a “population” of plants in a meter square area is
simulated. Modeled changes in biomass are based
primarily on literature-derived relationships among
the autotrophs and environmental factors. The major
changes in community composition were found to be a

result of responses to salinity and disturbance stressors
(Fong and Harwell, 1994). This model is incomplete,
however, in part because of the lack of knowledge
about the dynamics of the macroalgal autotrophs in
seagrass ecosystems. The purpose of the current mod-
eling effort was to quantify the relationship between
environmental conditions interacting with physio-
logical processes in the algae to affect growth, and
to explore how algal biomass changes with spatio-
temporal differences in environmental conditions.

The Fong and Harwell (1994)seagrass model was
used as a starting point for our modeling efforts. We
used a similar approach and separated the three func-
tional groups (drift, rhizophytic, and epiphytic algae)
into discrete, independent models. The three algal
models require quantitative parameterization for light,
temperature, salinity, and nutrient responses of growth.
A comprehensive literature survey found only a few
useful studies pertaining to Biscayne Bay, Florida
(Jones, 1968; Josselyn, 1977; Bach, 1979; Morrison,
1984) that would allow these functions to be parame-
terized on the basis of literature values alone. For this
reason a number of experimental approaches were
undertaken to provide additional needed data (Biber,
2002). To augment the experimental data gathered to
parameterize these models, data for similar seagrass
systems (e.g. in the Caribbean) available from the liter-
ature were used where appropriate (seeAppendix A).

The interaction with the seagrass model ofFong
and Harwell (1994)is through light limitation to the
seagrass in the presence of drift algae and epiphytes.
This interaction was modeled as part of the output data
from the separate algal models, and can be used as an
input function to the seagrass model light function.

2. Methods

2.1. Conceptual model and mathematical formulation

Initially, we developed a conceptual model (Hall
and Day, 1977; Gentile et al., 2001) that described
our hypothetical representation of critical state vari-
ables and processes. Algal biomass in the model is
influenced by light (L), temperature (T), salinity (S),
and nutrients (N) (both water column and sediment-
porewater nutrients). Drift algae and epiphytes are able
to utilize only water-column nutrients, while rhizo-
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Fig. 1. Conceptual model for the three functional groups simulated, and the relation of growth to environmental variables.

phytic algae can also take up nutrients in the sediment
porewater (Fig. 1). Optimal productivity of each func-
tional group occurs within a specific range for each
one of these environmental factors. Loss of biomass
is modeled as senescence of a constant proportion of
standing-stock biomass; additionally, for the drift al-
gae, removal of biomass by tidal currents is an im-
portant loss. Increased mortality of epiphytes occurs
when the seagrass substrate becomes limiting, a func-
tion of seagrass-blade turnover (Fig. 1).

The mathematical construct for each functional
group consists of a logistic growth equation that
predicts, under optimal conditions, an expected in-
crement in biomass over time (dB/dt) of that group
within a 1 m2 area. Each functional group has an op-
timal productivity that occurs within a specific range
for each of the environmental factors (L,T, S, N),
and the simulated production is depreciated from the
optimal value when any of the environmental factors
varies outside this optimal range. This depreciation is

accomplished by multiplying the maximum produc-
tivity by a series of scalars from 0 to 1 that represent
each factor. General model equations common to each
of the three functional groups are:

dB

dt
= (g − d)B (1)

change in biomass (B) per unit time (day) expressed
as grams of dry weight (m−2), g: growth,d: mortality
per day

g = gmax ×
(

1 − B

K

)
× f(L) × f(T) × f(S) × f(N)

(2)

gmax: maximum growth from literature values
(Table 1),(1 − B/K) = logistic growth formulation
up to a ‘carrying capacity’ (K) characteristic for each
scenario and determined from field data and calibra-
tion experiments using the model,f(X) are environ-
mental response functions. Values for these functions
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Table 1
Parameter values for environmental forcing functions expressed as range (average) at each location: canal, sheet-flow, and ocean sites

Canal Sheet-flow Ocean

Forcing functions
Light (�mol m−2 s−1) 50–550 (300) 50–550 (300) 100–600 (350)
Temperature (◦C) 18–32 (25) 18–32 (25) 18–32 (25)
Salinity (g kg−1) 0–40 (20) 10–35 (25) 28–38 (33)
Nwater (�M) 5–50 (20) 5–25 (10) 2–5 (3.5)
Pwater (�M) 0.05–0.2 (0.1) 0.05–0.2 (0.1) 0.05–0.2 (0.1)
Nsediment (�M) 20–150 (50) 20–150 (50) 20–150 (50)
Psediment (�M) 1.0–2.5 (1.5) 1.0–2.5 (1.5) 0.5–1.5 (1.0)

Drift
Binitial (g m−2) 40 40 40
K (g m−2) 50 30 10
gmax (percent per day) 5.0–60 (10) 5.0–60 (10) 5.0–60 (10)
d (percent per day) 0.5–1.5 (1.0) 0.5–1.5 (1.0) 0.5–1.5 (1.0)
P(I) 0.6 0.46 0.18
P(E) 0.4 0.54 0.82

Epiphytes
Binitial (g m−2) 50 50 50
K (g m−2) 90 90 150
gmax (percent per day) 2.0–35 (15) 2.0–35 (15) 2.0–35 (15)
d (percent per day) 0.5–7.5 (1.0) 0.5–7.5 (1.0) 0.5–7.5 (1.0)

Rhizophytes
Binitial (g m−2) 20 20 20
K (g m−2) 25 10 60
gmax (percent per day) 2.0–9.0 (5.0) 2.0–9.0 (5.0) 2.0–9.0 (5.0)
d (percent per day) 0.5–1.5 (1.0) 0.5–1.5 (1.0) 0.5–1.5 (1.0)

Starting conditions and parameters for each functional group. Differences in parameter values among locations are highlighted in bold text.

range from 0 to 1. When optimal, the function returns
1, when suboptimal<1 down to zero, when no growth
can occur (outside range of tolerance).f(L) = P–I
curve fitted to experimental data following the ap-
proach used byFong and Harwell (1994).f(T) andf(S)
are curves derived from experimental data (Fig. 2).
f(N) is a Monod function determined experimentally
for each functional group and fitted to the nutrient
concentration in the ambient environments (water
column and porewater). We use Liebig’s Law of the
minimum to determine the limiting nutrient [nitro-
gen (N) or phosphate (P)] for growth:f(N) = min.
(N, P).

d = (M + h) (3)

where natural mortality(M) + herbivory losses (h)
are estimated and the value used determined for each
functional group from calibration experiments using

the model (Table 1). In addition, for the epiphytes
and drift algae functional groups, there are additional
components tog andd as follows:

for epiphytes :dE = (M + h) × turnover (4)

where turnover is a function ofThalassiabiomass
available as a suitable substrate and is defined inFong
and Harwell (1994).

After a series of preliminary model simulations, we
recognized the importance of hydrodynamic transport
in structuring drift algal distribution at the landscape
level, and this factor was subsequently incorporated
into the model structure. For the drift algae this addi-
tional influence on biomass from hydrodynamic trans-
port is expressed as:

dBD

dt
= (g − d)BD + (I − E) (5)
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Fig. 2. Response functions of three functional groups of algae (drift algae, rhizophytic algae, and epiphytes) to light, water temperature,
salinity, and water-column nutrient levels. All functions are expressed as scalar ratios from zero (no growth) to one (optimal conditions for
growth). Filled and open symbols denote two separate experiments from which the response functions were determined. The light response
curve is fitted using theP–I model of Smith (1936), and the nutrient response is fitted with a Monod function. Temperature and salinity
responses use a line of best fit. For the rhizophytic group, the dashed line indicates data forPenicillus, and the solid line isHalimeda.
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whereI is biomass transported into the plot, andE is
biomass transported out of the plot per time step. These
are expressed as probabilities of hydrodynamic trans-
port into or out of a plot based on prevailing hydrody-
namic regime at a site and determined from field data.
Biomass entering (I) is calculated as a random value
between zero (no biomass) andK − BD, the differ-
ence between the carrying capacity and the standing-
stock biomass present at that time step. This ensures
that not more drift algae can enter than the maximum
(K) allowable for a given scenario. Biomass leaving
(E) is calculated as a random value between zero (no
biomass) andBD, the biomass present at that time
step. This ensures that not more drift algae can leave
than is actually present.

The simulation model was run under Stella ver.
5.1.1 (Hannon and Ruth, 1994), on a Macintosh Op-
erating System. The model runs with a daily time
step, using Runge-Kutta fourth order integration of
the non-linear differential equations (Swartzman and
Kaluzny, 1987). All model runs were over a 3650-day
period (i.e. 10 years), with convergence generally oc-
curring after about 250 days. The simulation was built
up step-by-step, beginning with optimal growth for a
single functional group, then the effects of less-than-
optimal conditions for growth. The aim was to intro-
duce a minimal number of assumptions and to find the
simplest mathematical expression for each factor that
was consistent with observation. New factors (e.g. hy-
drodynamic transport) were introduced only when it
was clear that the results of the simulation were not
consistent with observation.

2.2. Parameterization

The model was run initially under conditions de-
scriptive of an oceanic environment, i.e. without stres-
sors that occur under canal influence (Table 1). The
environmental forcing-function equations are the same
for all three models (oceanic, sheet-flow, and canal)
but the parameter values used differ (Table 1). Light
and temperature influence seasonal growth dynamics,
while salinity and nutrients are important stressors
from canal inputs and may modify growth of the al-
gae; these two forcing functions vary spatially across
the Bay, as well as temporally with seasonal changes
in rainfall. Light, temperature, and salinity are simu-
lated as sine functions:

Daily environment

= X̄ +
{

S.D.× sin

[
2π ×

(
time+ delay

360

)]}
(6)

The daily environment ofL, T, or Sis simulated us-
ing a mean (̄X) and a standard deviation (S.D.) de-
termined from environmental data at the study sites
(Biber, 2002). The delay differs for each forcing func-
tion to fit the sine function closer to observed seasonal
changes inL, T, andS, such that for light the maxi-
mum occurs in June and the minimum in December;
for temperature the maximum is in August and min-
imum in February; and for salinity the maximum oc-
curs in May, i.e. end of dry season, and minimum is in
November, i.e. the end of the rainy season. Nutrients
(both water column and porewater N+P) are simulated
by a mean and range determined from literature and
field data (see Appendix,Table A.1) using a stochastic
function based on a uniform random distribution:

daily[Nutr.] = X̄ ± random(min., max.) (7)

The parameters for the equations governing the
biomass and growth responses of the three functional
groups of algae were determined from the literature
on seagrass habitats in Florida and nearby regions,
experimental data, and calibration experiments using
the model.

2.2.1. Biomass and growth
Drift algae are commonly found in South Florida,

dominated primarily byLaurencia poiteaui, which can
be locally abundant, up to 250 g dw m−2 (Josselyn,
1977; Brook, 1981). The initial value for drift al-
gae biomass was set at the mean of 40 g dw m−2

(Table A.2). Maximum productivity of drift algae
varies depending on geographic location and species
present. Data for Florida and the Caribbean suggest
that a value of 10% per day is reasonable for natural
populations (Table A.3). Although productivity can
be greater in intense culture situations (e.g. up to 60%
per day reported byLapointe and Ryther, 1978), nat-
ural populations are unlikely ever to reach this high
level of productivity.

Epiphytes are a mixed group of species and func-
tional forms (Harlin, 1980). This functional group was
most abundant by biomass, because of the density
of Thalassiasubstrate; therefore, the initial biomass
was 50 g dw m−2 (Table A.2). Growth rates are hard
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to determine for this group, but were hypothesized
to be higher than for the other two groups based on
functional-form considerations, and were set at 15%
per day (Table 1).

Rhizophytic algae reported from South Florida
are mostly from the generaHalimedaandPenicillus.
Biomass of this group was typically less than for the
drift algae unlessHalimeda opuntiawas present as a
dense mat within a sampling quadrat. The initial value
for rhizophytic algae biomass was set at the mean of
20 g dw m−2 (Table A.2). Growth is slowest in this
group because of investments in structural tissue and
calcification (Littler and Littler, 1980), with a value
of 5% per day typical in Biscayne Bay (Table A.3).

Maximum biomass (K) for all three functional
groups was determined from field data (Biber, 2002)
and model calibration experiments to determine the
best fit to the observed data.

2.2.2. Light
Photosynthetically active radiation (PAR) is impor-

tant in determining productivity of macroalgae. The
amount of available light is influenced by season, wa-
ter depth, and clarity. Several mathematical formula-
tions of algal productivity (P) as a function of light
intensity (I) have been proposed (seeDuarte, 1995for
a review); the formulation ofSmith (1936)was re-
ported to best fit data for marine macrophytes (Nelson
and Siegrist, 1987; Fourqueran and Zieman, 1991).

Drift algae and epiphytes are ecologically im-
portant in seagrass ecosystems as they may re-
duce the amount of available light to the seagrass
blades (Cambridge et al., 1986; Silberstein et al.,
1986). Light-saturation values for photosynthesis in
most sub-tidal species of algae are around 150–300
�mol m−2 s−1 (Dring, 1982; Lobban et al., 1985).
This corresponds to values found for all three func-
tional groups (Table A.4). Photo-inhibition was not
reported in tropical sub-tidal drift and rhizophytic
algae, even at high light levels (Littler et al., 1988;
Dawes and Koch, 1990). The saturation value for
rhizophytic algae (250�mol m−2 s−1) is between the
Ik values for epiphytes (150�mol m−2 s−1) and drift
algae (300�mol m−2 s−1) (Fig. 2).

2.2.3. Temperature
Seasonal variations in temperature and light have

been implicated in controlling the biomass of macroal-

gal components of seagrass communities (Fong and
Harwell, 1994). Temperature optima for drift algae and
epiphytes are in the range of 20–28◦C (Table A.5),
which corresponds to the cooler water temperatures
in November–May in shallow South Florida seagrass
systems. Rhizophytic algae, in contrast, enjoy warmer
summer water temperatures, with optima up to 34◦C
reported (O’Neal and Prince, 1988), but have poor
low-temperature tolerance. The temperature modifier
curves (Fig. 2) show a rapid reduction in growth at
high temperatures, with an upper lethal limit around
35–37◦C for all three groups.

2.2.4. Salinity
Salinity is an important stressor in many South

Florida estuaries because of numerous canals that
discharge freshwater directly into these bays. Salinity
can drop to below 10 practical salinity units (psu)
intermittently during the wet season (Fatt and Wang,
1987) when freshwater discharge rates and volumes
are high. Optimal salinity for the drift algae is be-
tween 15 and 35 psu (Table A.6), indicating this group
is euryhaline and adapted to estuarine conditions.
Epiphytes have a higher tolerance to hypersaline con-
ditions (>35 psu) than drift algae, because of the nu-
merous species that comprise this group (Fig. 2). The
rhizophytic algae also prefer higher salinities with
a sharp decline in productivity outside their optimal
range of 20–35 psu (Fig. 2).

2.2.5. Nutrients
In general, tropical waters are characterized by low

nutrient concentrations, favoring algae that can persist
in low-nutrient environments, but can rapidly take up
nutrients when they become available during periodic
or episodic pulses from rainfall, runoff, or localized
enrichment from fish or bird excretion (D’Elia and
DeBoer, 1978; DeBoer et al., 1978). Water-column
nutrients provide the only source of nutrients to drift
algae and epiphytes, while rhizophytic algae have
access to higher concentrations of sediment nutri-
ents by translocation from the rhizomes to the fronds
(Williams, 1984). The relationship between nutrient
concentration and growth is modeled as a Monod
function, and saturation coefficients (Ks) reflect the
affinity of different groups to low nutrient concen-
trations (Fig. 2). Epiphytes are hypothesized to have
the highest growth rates at low nutrients, because of
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rapid uptake and little structural tissues (Ks = 5�M),
drift algae are intermediate (Ks = 10�M), and rhi-
zophytic algae have the lowestKs (20�M) because
of their ability to utilize high porewater nutrient con-
centrations (Fig. 2;Table A.7).

2.2.6. Interactions between algae and seagrass
The linkage between this model and theFong

and Harwell (1994)seagrass model is provided by a
light-attenuation function driven by epiphyte and drift
biomass.Fong and Harwell (1994)hypothesized that
increasing water-column nutrients, especially in high-
irradiance shallow-water zones, results in increased
epiphytism, causing a decline in seagrass productivity
and possibly an increase in the turnover of seagrass
blades. Drift algae are hypothesized to act in a simi-
lar role to seagrass epiphytes, by reducing available
light to the blades. Increased nutrient loading to es-
tuaries and bays has been shown to increase drift
algal biomass (Hauxwell et al., 2001), which, coupled
with increased epiphytism, could decrease seagrass
productivity.

The light-reduction function proposed byFong and
Harwell (1994)was modified by incorporating drift
biomass:

Light attenuation= L × f(BE + BD) (8)

whereBD = 1 − BD/K and is a function of percent
cover of drift algae. If biomass= K, then 100% cover
of drift algae occurs and no light penetrates through to
the seagrass. If biomass< K, then light is available
to the seagrass in some reduced quantity.

Epiphyte biomass is driven by the availability of
Thalassiablades as a suitable substrate. Output of the
Fong and Harwell (1994)seagrass model was used as
an input for the epiphyte component. Epiphyte mor-
tality is increased whenThalassiabiomass declines:

d = (dE × dsubstr) (9)

where:

dsubstr= f(BThal)

BThal = BThal + (BThal × turnover)

turnover= gThal

dThal

Turnover decreases when growth ofThalassiade-
clines, either from seasonal changes or environmental

stressors. Substrate-dependent death rate of epiphytes
(dsubstr) increases up to five times normal levels as
Thalassiabiomass (i.e. suitable substrate) declines.
This can be a result of reduced biomass (senescence)
or increased turnover, making the substrate more
ephemeral.

3. Results

3.1. Calibration

Model calibration is in essence the step of making
a model as consistent as possible with the data from
which parameters are estimated. As this model was
designed to simulate different regimes within Biscayne
Bay, the first series of calibration experiments was
done under oceanic conditions, and subsequently canal
and sheet-flow environments were investigated (see
Table 1).

Field and literature data were used to determine ini-
tial biomass andK at each site, with the values ad-
justed until a good visual agreement between field data
and model output was obtained (Fig. 3). Experimen-
tal and literature data were used to parameterize the
environmental responses and to define the scalars for
each functional group (Fig. 2). To make the model
stochastic, the growth and death parameters for each
functional group were defined as a mean and a random
distribution between a minimum and maximum value
determined from the literature (Table A.3). Some pa-
rameters that were not measured (e.g. senescence, sea-
grass turnover) were estimated and adjusted to better
the observed fit of the model with the field data. Fi-
nally, a delay was added to the growth of the drift algae
of 60 days, and 90 days for rhizophytic algae, while
the epiphytes showed no delay in growth; this is a re-
flection of the time between exposure of individuals to
a stimulus and the response of the ‘population’ at the
spatial scale (1 m2) being modeled, i.e. a lag induced
by physiological processes within the plants and the
resultant turnover to biomass at this spatial scale.

The model was run with all three functional groups
simultaneously, using the formulations fromFong and
Harwell (1994)for Thalassia. Model output for each
functional group in each regime (total of nine plots) is
shown inFig. 3. The simulated data trace is compared
with observed field biomass measures obtained over a
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Fig. 3. Plots of simulated (black line) vs. observed (grey line) biomass at two sites in three salinity regimes (ocean, sheet-flow, canal) for
three functional groups of algae (drift, rhizophytes, epiphytes). Observed data points are mean± S.E. of biomass data from 1 m2 quadrats
collected at two sites per regime (n= 24–40) from 1996 to 1999. Simulated (mean± 95% CI) biomass is from 27 years of model output.
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number of years for two sites in each regime (Biber,
2002).

For drift algae, the modeled biomass declines from
canal (45 g dw m−2) to oceanic sites (<5 g dw m−2).
The highest average biomass is simulated in June at
the canal sites, and in May at sheet-flow sites, while
the oceanic site is dominated by random variation aris-
ing from hydrodynamic removal of biomass (Fig. 3).
The seasonality predicted by the model and shown by
the field data indicates that drift algae in nearshore
freshwater-influenced regimes (canal, sheet-flow) are
most abundant in the late spring and early summer,
and then decline because of higher water temperatures
and possibly reduced salinities (Fig. 3). The popula-
tion lags behind seasonal changes by about 60 days.

Rhizophytic biomass shows the smallest seasonal
change (10–15 g dw) of the three functional groups
(Fig. 3). The oceanic site has the highest biomass
of rhizophytic algae (50 g dw m−2), followed by the
canal (25 g dw m−2), while the sheet-flow sites have
the least (<10 g dw m−2). In all three regimes, simu-
lated biomass is highest in the summer (August), and
lowest in the winter (January), a seasonal response that
has been reported previously for this functional group
(Bach, 1979; Wefer, 1980; Garrigue, 1991).

Epiphytes are the most abundant functional group
by weight, with 150 g dw m−2 at the oceanic site, and
about 100 g dw m−2 in both the canal and sheet-flow
sites (Fig. 3). The seasonal response of this group
was determined in large part by the tolerance of its
substrateThalassiato environmental stressors, par-
ticularly reduced salinity. At the oceanic sites, epi-
phyte biomass is highest in summer whenThalassia
standing-stock is highest (Fig. 3). In the sheet-flow
and canal sites, biomass ofThalassiais reduced dur-
ing the summer because of low salinity from freshwa-
ter runoff during the summer rainy season. The lack
of suitable substrate results in reduced biomass of epi-
phytes during this period (Fig. 3). Epiphyte biomass in
these two regimes is highest during the spring, when
turnover ofThalassiablades is high, resulting in an
abundance of suitable substrate.

From the visual assessment of the observed points
with the predicted time-series, it appears that the
model qualitatively does a good job of simulating the
drift and rhizophytic functional groups, but less so
for the epiphytes; however, this needs to be addressed
more rigorously using validation procedures.

3.2. Validation

In the validation stage the model predictions
are compared to independent field observations
(Jørgensen, 1994). A number of statistics measure
how well model-generated and real-system data com-
pare (van Horn, 1971; Harrison, 1990; Power, 1993).
A model is considered to be valid if it matches data
measured from a real system and reproduces behav-
ior in a way that can be construed as being reflective
of the operating characteristics of the real system
(Ziegler, 1976; Rykiel, 1996), i.e. determining if the
model mimics the real world sufficiently for its stated
purpose.

For the model to be validated the purpose, criteria
for acceptable use, and context for operation of the
model need to be stated (Rykiel, 1996). The purpose
of this model is to synthesize the knowledge of algal
autotrophs in tropical seagrass systems by simulating
biomass change with seasonal and stressor inputs.

Often validation is determined subjectively by a
statement that extols the visual goodness-of-fit (Law
and Kelton, 1991; Mayer and Butler, 1993). Increas-
ingly, statistical metrics are employed to determine rig-
orously the fit between modeled output and observed
data (Mayer and Butler, 1993; Power, 1993; Smith and
Rose, 1995). To compare observed with predicted val-
ues for validation, the output data were sub-sampled
by randomly picking a day in each month from days
366 to 3650 of the output. This was assumed to be a
“sampling” date, and so the same day was used in each
model output across the three regimes. These simu-
lated monthly biomass values (n= 27) were com-
pared with biomass data collected from the field in
observed (Y) versus predicted (X) plots (Fig. 4). Both
the Y = X line of perfect correspondence and the
fitted regression line to the data points are shown to
compare model fit with a perfect fit.

The modeled data fit the observed points well (r2 >

0.85) for the sheet-flow and oceanic site, but poorly
at the canal site (r2 = 0.13) (Fig. 4;Table 2). This
is because of the scatter of the epiphytes at the canal
site, compared to the other two regimes (Fig. 4). When
simulated data from the three sites are plotted simulta-
neously against observed values, both drift algae and
rhizophytes fit the regression line well, and this regres-
sion has anr2 = 0.76 (Fig. 4;Table 2). In the canal
and sheet-flow sites, drift algae were more abundant
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Fig. 4. Observed vs. predicted plots of model output for the three locations. For reference a perfect fit would be indicated by all the points
falling on the lineY = X. Linear regressions performed on the same data to show the line of best fit to the points. Symbols on the plot
of All Locations are: open squares= canal sites; triangles= sheet-flow sites; dots= oceanic sites.

than rhizophytic algae, whereas in the oceanic site the
opposite was true. In contrast, the epiphytes were al-
ways the most abundant functional group in all three
sites (Figs. 3 and 4). However, the simulated epiphyte
biomass fit the field data poorly, probably because of
the underlying seasonal response ofThalassiain the
model. Seasonal changes in epiphyte substrate occur
with reductions inThalassiabiomass in winter as a
response to lower water temperatures, and in summer
at canal and sheet-flow sites as a response to lowered
salinities present during the wet season (Fig. 3).

Simulated data were paired with the observed
biomass measures, and differences between these val-
ues and their relationship were examined statistically
using deviance measures. The following deviance
measures were calculated for each model (Mayer

and Butler, 1993; Power, 1993): mean absolute error
(MAE), mean square error (MSE), root mean square
error (RMSE), mean absolute error relative to the ob-
served mean (MAE/ȳ), root mean square error relative
to the observed mean (RMSE/ȳ), as well as the sta-
tistical metrics: Theil’s inequality coefficient (U), and
the modeling efficiency (EF). Theil’sU (Theil, 1958)
is based on prediction error, the difference between
matched pairs of observed versus predicted values.
Modeling efficiency is a dimensionless statistic that
directly relates model predictions to observed values,
and is interpreted as a proportion of the variance ex-
plained by the fit of the simulated data to theY = X

line (Loague and Green, 1991). For a perfect fit
EF = 1.0, and the degree of fit declines as the statistic
falls away from unity (Mayer and Butler, 1993).
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Table 2
Summary validation statisticsa and linear regression statisticsb applied to the plots inFig. 4 as well as the three functional groups

Statistic All sites Canal Sheet Ocean Drift Rhizophytes Epiphytes

MAE 11.636 14.358 7.245 13.306 4.420 5.364 25.124
MSE 360.004 526.165 121.946 431.902 29.342 55.639 995.032
RMSE 18.974 22.938 11.043 20.782 5.417 7.459 31.544
MAE/ȳ 0.334 0.476 0.273 0.278 0.320 0.294 0.346
RMSE/̄y 0.544 0.760 0.416 0.434 0.393 0.409 0.434
U 0.350 0.657 0.252 0.276 0.242 0.278 0.362
EF 0.697 0.350 0.808 0.810 0.984 0.967 0.722

r2 0.7599 0.1283 0.9103 0.8548 0.9397 0.8272 0.4053
a (P > |t|) 0.0935 0.0006 0.7497 0.9933 0.8748 0.6011 0.0027
b (P > F) <0.0001 0.0319 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

For the validation statistics, the value that is closest to a “perfect fit” by location and functional group is in italics. For the regression
statistics, significant results atα = 0.05 are highlighted in bold.

a MAE = (
∑ |yi − ŷi|)/n, mean absolute error; MSE= (

∑
yi − ŷi)/n, mean square error; RMSE: (MSE)0.5, root mean square error;

RMSE/̄y, general standard deviation;U, Theil’s inequality coefficient; and EF, the modeling efficiency; wherey = observed data,̂y =
predicted/simulated data, andȳ = (

∑
yi)/n.

b r2, correlation coefficient;a, probability of t-test of intercept= 0; b, probability of simultaneousF-statistic for intercept= 0 and
slope= 1.

The metrics EF, MSE and RMSE, indicate differ-
ences in the ability of a model to fit the observed data
(Elliot et al., 2000). Theil’sU is heavily influenced by
real data values that tend towards zero when combined
with a few values of higher magnitude (Elliot et al.,
2000). MSE and RMSE are ostensibly the same;
MSE is easier to use as its values are larger, and
thus differences among models are easier to identify.
Of all the statistics, EF is both simple to understand
and powerful in providing information upon the rela-
tionship between the model output and the real data
(Elliot et al., 2000). EF is preferred byElliot et al.
(2000)over the other metrics because of the similari-
ties of EF tor2 (correlation coefficient).

Based on the reported statistics, the model fit the
sheet-flow observations best (Table 2). The exception
was modeling efficiency, which was highest at the
oceanic site (Table 2). Looking at the output by func-
tional group, i.e. across models, it is apparent that the
simulations performed best for the drift algae func-
tional group (Table 2). Rhizophytes were more fa-
vored by the MAE/̄y statistic; however, the value of
this statistic varies very little among models, and so
may not be as sensitive as other measures to the fit of
the model (Table 2).

The regression line fitted to the data points indi-
cated agreement between observed versus predicted at
r2 > 0.75, except for the epiphytes and the canal site
(Table 2). The highest agreement between the model

and the field data was at the sheet-flow sites and for
the drift algae; in both cases, the variation explained is
greater than 90% (Table 2). The canal site has the poor-
est prediction, with less than 13% of the variability
explained (Table 2). As is evident from the observed
versus predicted plots, this is because of the simu-
lated seasonal dynamics of the epiphytes not agreeing
closely with the observed time trace (Fig. 3). As the
field data do not show any of the underlyingThalassia
dynamic, we suggest that the poor fit of the model may
occur because of the high variability in the epiphyte
field data, leading to a less-robust observed time trace
than for the other functional groups. In all the regres-
sion models, the slope is significantly different from
zero (P < 0.03). The intercept is not significantly dif-
ferent from zero, except for the canal site atα = 0.05
(Table 2).

These results suggest that the model is a useful tool
to aid in understanding the effects of seasonal and
stress-related effects from freshwater inputs on the dy-
namics of macro-algae withinThalassiahabitats in
Biscayne Bay and similar systems.

3.3. Sensitivity analysis

Sensitivity analysis is the process of varying model
parameters and comparing the results against a ref-
erence simulation (Miller, 1974, 1979; Fong et al.,
1997). This process identifies the model parameters,
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structures, empirically derived input information, and
initial conditions that cause the greatest change in
model predictions. Those parameters that cause sig-
nificant changes in the model’s behavior should be
estimated with the greatest accuracy.

Sensitivity analysis of eutrophication models have
shown that maximum growth of algae is an important
parameter to assess with high accuracy (Jørgensen,
1986). Other parameters with a high degree of uncer-
tainty, because of a lack of knowledge, include: mor-
tality estimates, seagrass turnover function on epiphyte
mortality, andK (the maximum biomass, which was
found to be important in the calibration phase).

The sensitivity analysis of this model was con-
ducted in four parts. First, model predictions under
oceanic conditions were analyzed for sensitivity to
a 10% change in initial biomass, maximum biomass
(K), maximum growth rate, and senescence rates for
each functional group. Second, sensitivities to the
functional group-specific terms, namely epiphyte-
substrate-dependent mortality (a function ofThalas-
sia biomass), and drift algal hydrodynamic-transport
removal, were investigated by altering the magnitude
(by 10%) of each function in successive runs. Third,
the sensitivities of each functional group to changes
in their environmental response functions to light,
temperature, salinity, nitrogen, and phosphorus were
tested by shifting the response curve optimum to
the left (lower optimum range) or the right (higher
optimum range) by approximately 10% of the range
(for temperature this equals a±3◦C shift); this var-
ied somewhat depending on the interval and range
of each environmental parameter. Fourth, the entire
suite of 60 sensitivity runs was repeated under canal
conditions, to assess the impact of the altered envi-
ronmental conditions on model output.

To assess the effects of changes over an entire year,
the daily productivity predicted by the model for each
algal group for year two of the 3-year simulations was
summed, and the range (max.–min.) and mean were
calculated. These statistics were then used to calculate
the relative change in the model output. Sensitivity for
each group was calculated as percent relative change
from the baseline:

relative changeX

= 100× (rerunX − baselineX)

baselineX
(10)

where baselineX is the statistic for predicted produc-
tivity for algal group X in the baseline model, and
rerun X is the statistic for predicted productivity for
algal groupX when a model parameter was changed
by 10%. The summed daily productivity reflects the
cumulative change in biomass over a year, mean in-
dicates any systematic change and the magnitude be-
tween the baseline and the sensitivity rerun, and fi-
nally, the range is indicative of changes in the sea-
sonal amplitude (max.–min.) over the course of the
year simulated. The relative (%) change in the sum
and mean are identical, as mean is a scalar of sum (by
a factor ofn−1); therefore, only the mean and range
were reported for the two regimes (Fig. 5).

3.3.1. Biomass and growth
The results of the sensitivity analysis on the intrinsic

growth parameters (Fig. 5) showed increasing growth
and reducing death rates resulted in increased biomass
of all three functional groups in both the oceanic and
canal sites (Fig. 5). The range (seasonal changes) for
the drift algae increased in the oceanic model, but not
in the canal model; the range for the epiphytes de-
creased in the oceanic model, whereas it remained the
same in the canal model; the range for the rhizophytic
algae increased with increasing mean and decreased
with decreasing mean in both models, indicating that
the mean and range were not independent. The max-
imum biomass (K) affected both the mean and the
range in all three functional groups in both the oceanic
and canal models. This factor was determined from
calibration runs for each group at each site, so it is
important to determine the sensitivity of this param-
eter on model performance. Changes inK of a factor
of 10% resulted in a greater than 25% increase in the
simulated output for the three groups in the oceanic
model, but less than 20% increase in the canal model
(Fig. 5). An increase inK caused an increase in both
the mean and the range, while reducingK resulted in
a decrease in both parameters, indicating a change in
both magnitude and amplitude of the simulated daily
productivity.

For the drift algae, export probability (P(E)), and
for the epiphytes, turnover, were parameters with a
consequential effect on predicted biomass. The drift
algae were more heavily influenced by theP(E) pa-
rameter in the oceanic site, reflecting the importance
of water motion in local biomass dynamics. An in-
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Fig. 5. Relative change (percent) in predicted productivity for three functional groups of algae in two salinity regimes. For both regimes
the relative change from the baseline condition in the mean predicted annual biomass and the range (an indicator of seasonal changes) are
plotted. The productivity parameters: initial biomass, carrying capacity (K), growth rate, death rate, were altered by±10%. In the final
panel the drift algae export-probability, and the epiphyte-substrate turnover-rate, were altered by±25%
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crease inP(E) resulted in increased removal of drift
algae, while a reduction caused the model to pre-
dict increases in drift abundance at the oceanic site
(Fig. 5). There were no changes greater than±10%
biomass with changes inP(E) at the canal site (Fig. 5).
For instance, a simulation that predicted no net re-
moval of drift (P(E) = 0) predicted the same rela-
tive change in model output as the simulation where
P(E) = 70% of the biomass was removed. Also, the
magnitude of the changes with variations inP(E) were
less than±10%, indicative of the lesser importance
of hydrodynamic transport at the canal site, relative
to seasonal changes, in predicting drift algal biomass
dynamics.

The turnover parameter influences the epiphyte
death rate, already shown to be an important param-
eter, by increasing mortality whenThalassiais less
abundant. Not surprisingly, the turnover parameter
(mean and range) was more sensitive at the canal
site, because of the sensitivity ofThalassiato envi-
ronmental conditions (salinity) at this site. The same
magnitude change in the turnover parameter caused
less of a change in epiphyte biomass at the oceanic
site compared to the canal site (Fig. 5).

3.3.2. Light
The sensitivity of the three functional groups to

changes in their environmental response functions at
both sites is plotted inFig. 6. Altering the response
to ambient PAR resulted in no notable change in the
ocean model, but did result in changes in the canal
model. The canal site typically experiences lower light
levels than the oceanic site; shifting the optimal tol-
erance curve for light to the left (−10%) resulted in
increased drift biomass (43.7%), as well as epiphyte
and rhizophytic biomass, whereas an increase in the
optimum to the right (+10%) resulted in a reduction
in biomass of all three groups, with epiphytes reduced
by 46.6% (Fig. 6). Concomitant changes in the range
were only evident in the drift algae at the canal site,
with a higher range corresponding to the higher mean,
or a reduced seasonal range in biomass with a re-
duction in the mean annual biomass present (Fig. 6).
While the rhizophytic algae at the oceanic site did not
show any significant change in the mean, the range
declined 34.3%, indicating a reduction in the ampli-
tude of the seasonal biomass dynamic with a shift to
higher light requirements.

3.3.3. Temperature and salinity
Changes to the temperature optima resulted in

<24% change in the mean biomass of any of the
functional groups at either site (Fig. 6). However, the
range was reduced for both the drift and rhizophytic
algae at the canal site, whereas it was increased in
both groups at the oceanic site. Salinity is an environ-
mental factor that differed greatly between oceanic
and canal models and was hypothesized to be one of
the major factors influencing community structure.
Shifts in the optimal salinity range did not affect
biomass under oceanic conditions, where salinity re-
mains high. In contrast, algal biomass of all three
groups in the canal site was positively influenced
when salinity tolerance was shifted to simulate better
tolerance to lower salinity (−10%), especially in the
drift algae, resulting in an increase in mean annual
biomass of 32.5% for this functional group (Fig. 6).
Corresponding to these changes in mean drift biomass
at the canal site were larger magnitude changes in
the seasonal range, but in opposing directions, i.e.
as mean biomass increased, the range declined, and
vice versa (Fig. 6). This systematic shift resulted in
higher simulated productivity for the drift algae when
they were more tolerant of reduced salinity, while the
opposite was true if poorer tolerance to low-salinity
levels were considered. The rhizophytic algae, which
are considered stenohaline, did not show any increase
in biomass under improved low-salinity tolerance,
possibly because the 10% change was not enough to
alter the modeled productivities significantly under
the low salinities encountered in the canal sites.

3.3.4. Nutrients
The two nutrients, N and P, are present in higher

concentrations at the low-salinity canal site as a re-
sult of increased terrestrial loadings. Changes in N re-
sponses did not significantly alter the mean biomass
of any of the three functional groups in the high-
nutrient canal site. In the low-nutrient oceanic site,
the epiphytes completely disappeared, reflected in the
89.6% reduction in the range, after the nitrogen-uptake
function was shifted to higher nitrogen requirements
(Fig. 6).

Phosphorus is often touted as being the limiting nu-
trient in tropical waters (Lapointe, 1987a,b;Lapointe
et al., 1992), and the increased biomass of all three
groups simulated in both canal and oceanic conditions
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Fig. 6. Relative change (percent) in environmental response functions for three functional groups of algae in two salinity regimes. For
both regimes the relative change from the baseline condition in the mean predicted annual biomass and the range (an indicator of seasonal
changes) are plotted. Response functions were shifted to the left (−10%) to create a lower optimum, and to the right (+10%) for a higher
optimal zone of tolerance to a particular environmental parameter.
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with a lower P optimum lends some support to this hy-
pothesis. P-limitation is apparently more severe in the
nitrogen-rich canal site, as evidenced by the greater
increase in simulated mean productivity compared to
the oceanic site for the same downward shift in P-
uptake optima (Fig. 6). The reduction in simulated
rhizophytic algal biomass in the oceanic site, where
P is low, when the optimum is shifted upward, also
indicates that this group is dependent on its ability to
take up P at very low environmental concentrations.
Changes in the seasonal range are negligible for the
canal site, and most affect the rhizophytic group in
the oceanic site. Shifting the P-uptake to lower con-
centrations (−10%) increases the range 23.9%, while
reducing the ability to take up P at low concentrations
(+10%) results in a decline in the seasonal range of
52.8%, mirroring the results for the reduction in mean
annual biomass of 91.1% (Fig. 6).

The sensitivity analysis highlighted the importance
of intrinsic growth parameters, the functional group-
specific terms of drift hydrodynamic transport and
epiphyte-substrate turnover rates, and the optimal re-
sponse range towards environmental parameters on
model performance under two extremes found in Bis-
cayne Bay. The results are complex, but the assess-
ment of the magnitude of the change in model output
compared to baseline conditions agrees with what is
known about the system, and highlights the need for
high-quality data to simulate adequately some of the
interactions occurring among environmental forcing
functions and algal physiological and population re-
sponses, which determine community and landscape
characteristics evident in different regions of the Bay.

4. Discussion

Algal growth is one of the most intensely modeled
aquatic biological processes, as it is the most impor-
tant submodel in eutrophication models (Jørgensen,
1986). Concern with the environment has prompted
the development of ecological models for environ-
mental management since the 1960s (Schnoor, 1996).
Algal models in the literature are of two basic types:
matrix models that represents processes at the popu-
lation level (e.g.Åberg, 1992a,b;Ang and de Wreede,
1990, 1993), and physiological models that represent
the relationship between productivity and different

physical and chemical factors (e.g.Pregnall and Rudy,
1985; Jørgensen, 1986; Ferreira and Ramos, 1989;
Gordon and McComb, 1989; Bendoricchio et al.,
1993, 1994; Fong et al., 1994; Guimaraens, 1999).
Models that have used a multiplicative formulation to
parameterize the physiological responses to multiple
limiting factors include papers byLehman et al. (1975)
on phytoplankton dynamics, a seagrass model byFong
and Harwell (1994), and a recent suite of studies on
Ulva (Bendoricchio et al., 1994; Coffaro and Sfriso,
1997; Solidoro et al., 1997), as well as this study.

Many macrophyte models treat autotrophs as a sin-
gle unit (e.g.Kemp et al., 1995; Madden and Kemp,
1996), without regard for differences among species
in their relationship between maximum photosyn-
thesis and light intensity, or species-specific differ-
ences in nutrient-uptake efficiencies. Alternatively, in
some models only a single species is simulated (e.g.
Bendoricchio et al., 1994; Coffaro and Sfriso, 1997;
Solidoro et al., 1997; Guimaraens, 1999; da Silva
and Asmus, 2001), and community-level changes in
composition are not considered. In this study we have
applied aspects of both approaches, by aggregating
species of macroalgae with similar physiology into
functional groups, while parameterizing the compo-
nent models from data on one, or a few closely related
species. One test of the similarity among species
within a functional group in this model could be ap-
plied by separating the experimental data obtained
for Penicillus and Halimeda, both representatives of
the rhizophytic algae functional group. Also, enough
literature data exist to parameterize a separate drift
model using data forGracilaria (P. Biber, unpublished
manuscript). However, there has been little effort to
date to simulate the numerous individual species in
a community and little attempt to model changes in
species composition during cultural eutrophication
(but seeCoffaro et al., 1997), which is addressed in
this model.

Development of this model has also made obvious
areas for which information on tropical macroalgal
ecology is lacking, particularly factors involved with
population demographics such as: birth and recruit-
ment (no data available), and physiological death (lit-
tle data, but estimable by model calibration). In the
literature only a few studies to date have addressed the
importance of recruitment to algal dynamics (Clifton
and Clifton, 1999; Lotze, 1998; Lotze et al., 2000).
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The senescence or decay process and other factors
contributing to loss rates, e.g. grazing and sporulation,
have also been less studied than production (Lehman
et al., 1975; Coffaro and Bocci, 1997; Salomonsen
et al., 1997). This may be a methodological prob-
lem, as growth is an intrinsic property of an organism,
and therefore more easily isolated and measured un-
der controlled laboratory conditions, while loss rates
are often controlled by external, habitat-specific fac-
tors that may be difficult to reproduce under controlled
conditions (Salomonsen et al., 1997).

The Monod nutrient-response formulation was
used in this model because of the lack of information
on uptake kinetics and nutrient cell quotas for most
tropical macroalgal species. The generally accepted
two-step nutrient-dynamic formulation of Michaelis-
Menten uptake kinetics, coupled with a Droop formu-
lation for growth (Borchart, 1996), is widely used in
temperate models of algal dynamics where seasonal
nutrient inputs with spring and summer blooms in
biomass are prevalent (e.g.Bendoricchio et al., 1994;
Kemp et al., 1995; Solidoro et al., 1997), as well as
in a recent model for tropical species under upwelling
conditions (Guimaraens, 1999). The incorporation of
a two-step nutrient dynamic allows these models to
mimic luxury uptake and starvation-induced changes
in nutrient cell quotas, resulting in time lags between
water-column nutrient availability and biomass pro-
duction. This can be important for enclosed bodies of
water where introduced N and P can disappear from
the water column from the rapid uptake by algae,
and the subsequent bloom formation of drift and epi-
phytic species (Madden and Kemp, 1996; Coffaro and
Bocci, 1997; Valiela et al., 1997). Further, this type
of mathematical formulation is important for models
that attempt to simulate resource competition among
groups of species, because it mimics physiological
processes important in nutrient uptake and growth
dynamics (Fong et al., 1994; Tilman, 1977, 1982).
Unfortunately, the lack of data precluded the use of
this type of approach in our model.

Coefficients in the algal response-functions to light
and nutrient uptake, such asIk andKs, are treated as
constants, even though they are not strictly so in na-
ture (Lehman et al., 1975). Although this treatment is
simplistic compared to the real-world situation, they
are nonetheless basic to a predictive model of algal
dynamics (Lehman et al., 1975; Cloern, 1977; Keller,

1989; Fasham et al., 1990; Duarte, 1995). The exper-
imental measurement of these parameters is compli-
cated by the fact that they may change through time
as algae adapt to varying environmental conditions.
For instance, light intensity, temperature, and nutrient
concentration are all known to influence the photosyn-
thetic responses in algae (Davison, 1991; Falkowski
and LaRoche, 1991; Turpin, 1991). Seasonal changes
in the functional responses to salinity were observed
in the drift algae collected from the canal site, with
better low-salinity tolerance during the wet season.

The consequence of these hypotheses can be tested
by the model formulation being altered, such as dur-
ing sensitivity analyses when the formulations were
altered by increasing or decreasing the optimal range,
a change similar to altering the magnitude of the phys-
iological coefficients. The changes in these parameters
indicated that for many of the formulations these coef-
ficients were not very sensitive over the range of con-
ditions that the algae would normally experience in the
Bay. The coefficients that did cause significant changes
were not unexpected from previous knowledge about
the system being investigated, e.g. nutrient limitation.
This insensitivity of a functional response, compared
to the range of environmental conditions present, has
been reported previously for nutrient-uptake rates and
algal growth under eutrophic conditions (Coffaro and
Sfriso, 1997), even though this was the major pro-
cess under investigation for the model being developed
(Bendoricchio et al., 1994; Coffaro and Bocci, 1997;
Coffaro and Sfriso, 1997; Solidoro et al., 1997). In that
project it was found that spatial variation arising from
flow regimes was more important in structuringUlva
biomass than local nutrient variation, which generally
was non-limiting to productivity (Coffaro and Sfriso,
1997; Flindt et al., 1997).

Hydrodynamic transport of unattached biomass was
important in simulating drift dynamics accurately in
this model. It was found to be a very important pro-
cess in describing the temporal change in biomass at
locales with different intensities of tidal flow, resulting
in sharply reduced persistence times in areas subject
to high tidal flushing. Recent modeling efforts have
indicated that the flow regime can be a major environ-
mental process in balancing the biomass budget for
a variety of macrophytes (Coffaro and Bocci, 1997;
Flindt et al., 1997; Salomonsen et al., 1997; da Silva
and Asmus, 2001). This process has not been well-
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investigated in many macrophyte models, presumably
because of the attached nature of many aquatic plants.

This current study is also one of the first models
that investigates the importance of salinity differences
in structuring community dynamics, a continuation
of work published on South Florida seagrass systems
(Fong and Harwell, 1994; Fong et al., 1997; Lirman
and Cropper, 2003). Salinity is an under-investigated
process in eutrophication models, although it has the
potential to influence community structure by the
exclusion of intolerant species. Because of the co-
occurrence of nutrient inputs with salinity reductions,
this process should be more completely investigated.

The linkage of the algal models presented here to
the seagrass model ofFong and Harwell (1994)occurs
primarily via reduction of irradiance available to the
seagrasses from shading by epiphyte and drift algal
biomass. The second linkage occurs between seagrass
biomass and epiphyte-substrate availability. Sensitiv-
ity analysis and validation statistics demonstrated the
importance of this parameter on epiphyte dynamics,
especially in canal conditions that are stressful to the
simulatedThalassiabased on theFong and Harwell
(1994) model. The current formulation reduces epi-
phyte biomass, if substrate becomes limiting, by in-
creasing the epiphyte mortality rate. This may not be
reflective of the real-world situation, where epiphytes
can continue to persist even after seagrass-blade de-
tachment. It has been proposed that numerous species
of drift algae originate as epiphytes that continue to
flourish after the seagrass-blade senesces (Humm,
1964; Benz et al., 1979). A number of alternative for-
mulations exist for epiphyte biomass as a function of
macrophyte (seagrass) substrate (Madden and Kemp,
1996; da Silva and Asmus, 2001), which could be
adapted to the current model.

The present model does not currently allow for spa-
tially explicit functions such as drift transport dis-
tance over different substrate-types, and source–sink
relationships that may be important for understanding
Bay-wide distributions of this functional group. These
spatially discrete processes can be of fundamental im-
portance to understanding community dynamics over
time (Tilman, 1994; Turchin, 1998). The rhizophytic
algae are not dynamically linked to the other two func-
tional groups in this version of the model. Feedbacks
on rhizophytic biomass could occur through light lim-
itation from drift algae and possibly epiphytes, anal-

ogous to the seagrass. Also, competition with sea-
grasses for nutrients and space, and the facilitation of
succession of the seagrass community via substrate
stabilization and nutrient enrichment of the sediments
by the rhizophytes (Zieman, 1982; Williams, 1990),
should be addressed in a coupled version of the sea-
grass and algal models. The importance of grazing on
the loss rates of the three different functional groups
was not addressed here because of the lack of ad-
equate data from the Bay. Some initial experiments
indicated that drift algae are preferentially consumed
over the calcareous and chemically defended rhizo-
phytic algae (Paul and Hay, 1986; Paul and Fenical,
1987; Hay et al., 1994). Further, drift algae exposed to
high-nutrient, low-salinity regimes (canal conditions)
were preferentially consumed over those grown un-
der oceanic conditions, indicating the importance of
investigating grazing responses in future studies, be-
cause of the potential links to higher consumers via
the different trophic paths of detrital export versus di-
rect grazing.

Many of the limitations of the current model con-
struct could be abolished using a structural dynamic
modeling approach. Structural dynamic models are
ecological models that describe both quantitative
and qualitative changes occurring to a system using
some type of ecological goal function, e.g. exergy,
or optimization algorithm (Nielsen, 1995; Jørgensen,
2001; Zhang et al., 2003). The advantage of this
“fifth generation” model construct (Jørgensen, 1995)
is the ability of a model to simulate ecosystem prop-
erties that are structurally or qualitatively dynamic,
such as shifts in species composition that often occur
during eutrophication, a property which determinis-
tic, steady-state models do not possess or simulate
poorly (Marques et al., 1997; Nielsen, 1997). Like
many structural dynamic models, our approach was
optimized to the pertinent forcing functions with the
implicit goal of reducing model complexity by only
including additional variables once they became nec-
essary to realistically simulate the observed system
dynamics, e.g. hydrodynamic transport of drifting
macroalgae. However, the inability of the mathe-
matical formulations used to incorporate variability,
such as intrinsic growth rates and carrying capacity,
limited the model to a reduced range of dynamic be-
haviors. We suggest that the current algal production
model should be linked with the existing seagrass
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production model ofFong and Harwell (1994)to
yield a total benthic autotroph model, and that using
a structural dynamic approach would allow this next-
iteration model to capture a broader range of possible
ecosystem behaviors. This approach will result in a
policy-relevant tool that aims to aid in the manage-
ment of Biscayne Bay under various proposed South
Florida restoration scenarios (Harwell et al., 1996).

5. Conclusion

A seasonal trend in biomass was evident in all
three functional groups of algae in this model and
was caused by seasonal changes in simulated light
and water temperature, although salinity was also
important, especially in the canal simulation. The
most abundant group by biomass was the epiphytes
at all sites, with drift algae the next most abundant
in the canal simulation, while the rhizophytic al-
gae ranked second in the oceanic simulation. Both
drift algae and epiphytes were euryhaline in their
salinity tolerance. The stenohaline rhizophytes were
excluded under low-salinity conditions. Drift algae
had higher biomass under high-nutrient conditions
(chiefly nitrogen). Rhizophytic algae were simulated
to do better under low-nutrient conditions, provided
P concentrations were not limiting in the simulation.
Both predicted drift and rhizophytic algal productiv-
ity agreed with observed data better when a time lag
was introduced in the model construct. There was no
time lag for the epiphytes, although this functional
group was found to be strongly influenced by the
ability of its Thalassiasubstrate to tolerate salinity
stress through feedback provided on the epiphyte
mortality rate. This was the one instance where the
model performed poorly at matching the observed
data, indicating a possible admonition on relying too
heavily on ecological field data.

Model sensitivity was high to changes in algal in-
trinsic growth and death rates, as well as the maximum
biomass, which was site-specific. Furthermore, func-
tional group-specific interactions including drift re-
moval by currents, and epiphyte-substrate-dependent
mortality were also important in determining the
biomass dynamics. Drift algae were found to be heav-
ily influenced by local hydrodynamic conditions, with
the removal of a large percentage of standing-stock

biomass under conditions of strong tidal flows. Of the
environmental variables, light and temperature were
not found to alter model predictions considerably,
whereas salinity and nutrients did cause changes in the
composition of the simulated algal community. Salin-
ity negatively affected both epiphyte (via a reduction
in Thalassia) and rhizophytic algal abundance under
canal conditions. Nutrient limitation was both func-
tional group- and condition-specific. Nitrogen-limited
epiphyte production occurred under oceanic condi-
tions, whereas phosphorus appeared to be limiting all
three functional groups in the canal scenario.

The stated purpose of this model was to synthesize
the knowledge about algal autotrophs in seagrass sys-
tems within Biscayne Bay by simulating changes in
biomass with seasonal and stressor inputs. The model
can currently be deemed acceptable for use over this
domain by the user community, with a number of fu-
ture improvements and additions suggested. These in-
clude investigating the formulation of the epiphyte-
substrate-dependent mortality function, determining
the importance of grazing losses, and linking the algal
model to a pre-existing seagrass model, which could
then be made spatially explicit.
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Range of parameter values used to calibrate the
model, based on literature reports from South Florida
and Caribbean seagrass systems (seeTables A.1–A.7).
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Table A.1
Range of water-column nutrient concentrations and porewater nutrient concentrations (units= �M) reported from the literature for seagrass
habitats similar to those studied (TiN= NH4

+ + NO3
−)

Location NH4
+ NO3

− TiN PO4
3− Reference

Water column
Biscayne Bay 0.4–2.8 0.5–6.5 0.75–10.0 0.3–1.8 Irlandi (unpublished data)
Big Pine Key 1.14–2.42 0.08–0.14 Lapointe (1987b)
Fla Bay 2.0–3.0 0.1 Rosenfeld (1979)
Fla Bay 0.02–11.03 0–6.13.0 7.0–123.2 0–0.33 Fourqurean et al. (1993)
Key Largo 0.75–1.71 0.04–0.09 O’Neal and Prince (1988)
Fla Keys 0.04–0.29 0.29–0.3 0.07–0.11 Delgado and Lapointe (1994)
Fla Keys 0.3–1.2 0.25–2.1 <0.12 Lapointe (1989)
Fla Keys 0.15–6.92 0.27–49 2.5–5.0 0.03–1.6 Lapointe et al. (1990)
Fla Keys 1.0–1.5 0.6–1.0 0.1–0.3 Lapointe and Clark (1992)
Fla Keys 3.11 0.19 Lapointe et al. (unpublished data)
Fla Keys 1.86–5.48 0.26–1.38 0.07–0.49 Lapointe and Matzie (1996)
Jamaica 0.19–0.49 4.25–27.86 0.11–0.33 Lapointe (1997)
Western Caribbean 3.16 0.04 Lapointe et al. (unpublished data)
Belize 0.38–1.4 0.08–0.1 Lapointe et al. (1987)
Bermuda <1.0 <0.15 Lapointe and Connell (1989)

Porewaters
Biscayne Bay 25–180 0.75–2.5 40–200 0.7–2.4 Irlandi (unpublished data)
Fla Bay 400–1100 5.0–30 Rosenfeld (1979)
Fla Keys 470–1035 4.0–10.3 Lapointe et al. (1990)
Bermuda 23.0–40.0 0.3–0.5 Lapointe and Connell (1989)
Bermuda 60.4–107.0 17.9–23.8 McGlathery et al. (1992)
U.S. Virgin Isl. 10.0–79.0 2.78–39.8 Williams et al. (1985)
Puerto Rico 5.0–60.0 0.1–4.2 Corredor and Capone (1985)

Table A.2
Maximum and average biomass values (g dw m−2) of the three functional groups of macroalgae modeled, from reported literature on
seagrass habitats in Florida and nearby regions

Group/species Location Maximum biomass Mean biomass Reference

Drift
Drift Biscayne Bay 408.0 12.6 Biber (2002)
Drift Black Pt, Bisc B. 12.7 6.8 Brook (1981)
Drift Fender Pt, Bisc B. 251.7 148.2 Brook (1981)
Laurencia Card Sound 29.2 6.1 Josselyn (1977)
Laurencia Card Sound 176.0 7.0 Thorhaug (1971)
Laurencia Card Sound 40.5 20.8 Thorhaug (1976)
Laurencia Card Sound 10.0 2.8 Thorhaug et al. (1979)
Laurencia Florida Bay 24.1 Zieman et al. (1989)
Dicytota N. Fla Reef Tract 20.4 10.4 Lirman and Biber (2000)
Chondria Indian River 405.3 4.5 Benz et al. (1979)
Drift Indian River 219.0 40.0 Kulczycki et al. (1981)
Drift Indian River 4860 164.0 Virnstein and Carbonara (1985)
Drift Indian River 191.2 75.0 Virnstein and Howard (1987)
Drift Tampa Bay 150.0 25.0 Bell and Hall (1997)

Rhizophytes
Halimeda Biscayne Bay 360.0 41.5 Biber (2002)
Halimeda Fender Point 0.9 Brook (1981)
H. incrassata Card Sound 21.7 5.8 Bach (1979)
H. monile Card Sound 7.1 1.5 Bach (1979)
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Table A.2 (Continued)

Group/species Location Maximum biomass Mean biomass Reference

Halimeda Card Sound 199.0 14.8 Thorhaug (1971)
Halimeda Florida Bay 112.0 7.6 Bosence (1989)
Halimeda N. Fla Reef Tract 258.6 99.6 Lirman and Biber (2000)
Halimeda Bermuda 504.0 12–156.0 South (1983)
Halimeda Bermuda 350.0 7.5 Wefer (1980)
Penicillus Biscayne Bay 422.0 20.7 Biber (2002)
Penicillus Fender Point 12.6 8.2 Brook (1981)
Penicillus Card Sound 455.0 8.3 Thorhaug (1971)
Penicillus Card Sound 6.1 1.2 Bach (1979)
Penicillus Florida Bay 80.0 3.5 Bosence (1989)
Penicillus Florida Bay 377.0 65.0 Montague and Ley (1993)
Penicillus Florida Bay 56.0 2.5 Stockman et al. (1967)
Penicillus Florida Bay 6.7 Zieman et al. (1989)
Penicillus Bermuda 56.0 10.0 South (1983)
Penicillus Bermuda 11.2 Wefer (1980)

Epiphytes
Thalassia Biscayne Bay 869.0 73.0 Biber (2002)
Thalassia Biscayne Bay 315.0 45.0 Irlandi (unpublished data)
Thalassia Florida Bay 2.6 2.0 Bosence (1989)
Thalassia Bimini 88.0 54.0 Capone et al. (1979)
Thalassia Bahamas 11.3 Jensen and Gibson (1986)
Thalassia Indian River 106.3 Heffernan and Gibson (1983)
Thalassia Indian River 21.9 Jensen and Gibson (1986)
Thalassia Tampa Bay 18.7 Jensen and Gibson (1986)
Thalassia N. Florida 130.0 78.0 Sullivan and Wear (1996)

Table A.3
Range or maximum, and average growth rates (percent per day) of the three functional groups of macroalgae modeled, from reported
literature on seagrass habitats in Florida and nearby regions

Group/species Location Range/maximum Mean Reference

Drift
Drift Biscayne Bay 7.0 2.5 Biber (2002)
Laurencia Biscayne Bay 4.0–8.0 5.5 Thorhaug and Marcus (1981)
Laurencia Card Sound 2.0–10.0 4.0 Thorhaug et al. (1979)
Laurencia Card Sound 1.0–7.0 3.5 Josselyn (1977)
Laurencia N. Fla Reef Tract 1.7–3.4 2.8 Lirman and Biber (2000)
Hypnea N. Fla Reef Tract 0.8 Lirman and Biber (2000)
Gracilaria N. Fla Reef Tract 4.0–8.0 6.0 Thorhaug and Marcus (1981)
Laurencia Florida Bay 2.0 Lapointe (1989)
Gracilaria Florida Bay 14.0 2.0 Lapointe (1989)
Laurencia Florida Keys 2.8–5.5 4.0 Delgado and Lapointe (1994)
Gracilaria Florida Keys 2.0–12.0 7.0 Lapointe (1985)
Gracilaria Florida Keys 0.1–12.0 5.0 Lapointe (1987a)
Hypnea Florida Keys 20.0 Guist et al. (1982)
Gracilaria Indian River 11.2–23.1 17.0 Hanisak et al. (1988)
Gracilaria Indian River 1.5 Hwang et al. (1987)
Gracilaria Indian River 60.0 Lapointe and Ryther (1978)

Rhizophytes
Halimeda Biscayne Bay 1.3 0.5 Biber (2002)
Halimeda Biscayne Bay 1.5 1.3 Lirman and Biber (2000)
Halimeda Card Sound 0.01–8.5 1.4a Bach (1979)
Halimeda Florida Bay 1.0 0.5a Bosence (1989)
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Table A.3 (Continued)

Group/species Location Range/maximum Mean Reference

Halimeda Florida Bay 1.6–2.7 2.1 Stockman et al. (1967)
Halimeda Florida Keys 1.0–3.5 1.8 Delgado and Lapointe (1994)
Halimeda Marquesas Keys 0.04–1.0 0.6 Hudson (1985)
Halimeda Bahama Banks 8.0–9.0 Freile et al. (1995)
Halimeda Bermuda 3.3 Wefer (1980)
Penicillus Biscayne Bay 1.5 0.2 Biber (2002)
Penicillus Card Sound 0.04–6.2 8.5a Bach (1979)
Penicillus Florida Bay 1.5a Bosence (1989)
Penicillus Florida Keys 0.7–2.2 2.0 Delgado and Lapointe (1994)
Penicillus Bermuda 2.0 Wefer (1980)

Epiphytes
Thalassia Biscayne Bay 1.0–35.0 5 Biber (2002)
Thalassia Florida Bay 0.9–1.6 1.0 Frankovich and Zieman (1995)
Thalassia Bahamas 0.16–4.7 0.3 Jensen and Gibson (1986)
Thalassia Indian River 0.09–3.4 1.3 Heffernan and Gibson (1983)
Thalassia Indian River 0.15–5.6 1.6 Jensen and Gibson (1986)
Thalassia Tampa Bay 0.1–1.5 0.5 Jensen and Gibson (1986)
Thalassia N. Florida 0.05–5.4 2.7 Sullivan and Wear (1996)

a Production estimated from CaCO3 production, underestimates true production.

Table A.4
Light-saturation values (Ik) from P–I curves for the three functional groups of macroalgae modeled, from reported literature on seagrass
habitats in Florida and nearby regions

Group/species Location Ik (�mol m−2 s−1) Reference

Drift
Drift Biscayne Bay 300 Biber (2002)
Laurencia Biscayne Bay 40–174 Marcus and Thorhaug (1980)
Laurencia Biscayne Bay 76.4–90.3c Josselyn (1977)
Gracilaria Florida Keys 1000–1100 Lapointe (1987)
Laurencia Florida Keys 600a Mathieson and Dawes (1986)
Hypnea Florida Keys 850a Mathieson and Dawes (1986)
Gracilaria Florida Keys 600a Mathieson and Dawes (1986)
Gracilaria Indian River 100 Hanisak and Samuel (1983)
Drift Indian River 344–431b Benz et al. (1979)
Gracilaria Tampa Bay 1200+ Dawes and Koch (1990)
Gracilaria Tampa Bay 65 Friedlander and Dawes (1984a,b)
Hypnea Tampa Bay 500a Dawes et al. (1976)
Acanthophora Tampa Bay 1000a Dawes et al. (1978)
Gracilaria Tampa Bay 500a Dawes et al. (1978)

Rhizophytes
Halimeda Biscayne Bay 250–300 Biber (2002)
Halimeda Florida Keys 80a Mathieson and Dawes (1986)
Halimeda Bahamas 60–103 Littler et al. (1988)
Penicillus Biscayne Bay 250–300 Biber (2002)
Caulerpa Florida Keys 80 Mathieson and Dawes (1986)
Caulerpa Florida Keys 38–111 O’Neal and Prince (1988)

Epiphytes
Thalassia Biscayne Bay 150 Biber (2002)
Thalassia Bimini 105–630 Capone et al. (1979)



48 P.D. Biber et al. / Ecological Modelling 175 (2004) 25–54

Table A.4 (Continued)

Group/species Location Ik (�mol m−2 s−1) Reference

Halodule Mississippi 300 Moncrieff et al. (1992)
Halodule Mississippi <400 Sullivan et al. (1991)
Halodule Texas 300–400 Morgan and Kitting (1984)
Zostera N. Carolina 60–300 Penhale (1977)

�mol m−2 s−1 = aft candles× 3.3; bLy × 0.86; cg cal× 0.28.

Table A.5
Temperature ranges and optima (◦C) of the three functional groups of macroalgae modeled, from reported literature on seagrass habitats
in Florida and nearby regions, for epiphytes responses were assumed to be identical to drift algae

Group/species Location Range Optima Reference

Drift
Laurencia Biscayne Bay 7–35 10–28 Biber (2002)
Laurencia Biscayne Bay 18–30 23–26 Josselyn (1977)
Laurencia Biscayne Bay 19–32 30 Thorhaug (1976)
Laurencia Biscayne Bay 20–29 Marcus and Thorhaug (1980)
Laurencia Card Sound 15–30 32–35 lethal Bader and Roessler (1971)
Hypnea Florida Keys 18–24 Guist et al. (1982)
Drift Indian River 23–27 Benz et al. (1979)
Gracilaria Indian River 24–30 Hanisak and Samuel (1983)
Gracilaria Indian River 22 Lapointe (1982)
Hypnea Tampa Bay 15–35 28–32 Dawes et al. (1976)
Acanthophora Tampa Bay 15–36 30–36 Dawes et al. (1978)
Gracilaria Tampa Bay 18–36 30 Dawes et al. (1978)
Hypnea Tampa Bay 24–32 Durako and Dawes (1980)
Gracilaria Tampa Bay 25–28 Friedlander and Dawes (1984a,b)

Rhizophytes
Halimeda Biscayne Bay 17–36 30–31 Biber (2002)
Halimeda Biscayne Bay 19–34 30–32 Thorhaug (1976)
Halimeda Card Sound 15–36 30 Bader and Roessler (1971)
Penicillus Biscayne Bay 15–35 27–29 Biber (2002)
Penicillus Biscayne Bay 19–34 29–31 Thorhaug (1976)
Penicillus Card Sound 15–36 30 Bader and Roessler (1971)
Caulerpa Florida Keys 15–34 30–34 O’Neal and Prince (1988)

Table A.6
Salinity ranges and optima (practical salinity units, psu) of the three functional groups of macroalgae modeled, from reported literature on
seagrass habitats in Florida and nearby regions

Group/species Location Range Optima Reference

Drift
Drift Biscayne Bay 7.0–35 15–35 Biber (2002)
Hypnea Tampa Bay 15–45 20 Dawes et al. (1976)
Acanthophora Tampa Bay Dawes et al. (1978)
Acanthophora Tampa Bay 10.0–50 15–20 Dawes et al. (1978)
Gracilaria Tampa Bay 10.0–50 30 Dawes et al. (1978)
Gracilaria Tampa Bay 30 Friedlander and Dawes (1984b)
Gracilaria Indian River 24–36 Hanisak and Samuel (1983)
Drift Indian River 33–34 Benz et al. (1979)
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Table A.6 (Continued)

Group/species Location Range Optima Reference

Chondria South Texas 20–40 25–30 Conover (1964)
Dictyota South Texas 25–35 30 Conover (1964)
Laurencia South Texas 10.0–30 25–35 Conover (1964)

Rhizophytes
Halimeda Biscayne Bay 15–45 20–35 Biber (2002)
Penicillus Biscayne Bay 15–40 20–35 Biber (2002)
Penicillus South Texas 15–45 30–40 Conover (1964)
Caulerpa Florida Keys 27–35 32 O’Neal and Prince (1988)
Caulerpa South Texas 25–35 30 Conover (1964)

Epiphytes
Thalassia Biscayne Bay 15–55 30–45 Biber (2002)
Thalassia—Spirulina Tampa Bay 20–25 Phillips (1964)
Thalassia—Lyngbya Tampa Bay >27.5 Phillips (1964)

Table A.7
Monod saturation coefficient (Ks) of the three functional groups of macroalgae modeled, from reported literature on seagrass habitats in
Florida and nearby regions

Group/species Location N (�M) P (�M) Reference

Drift
Drift Biscayne Bay 10 1 Biber (2002)
Gracilaria Indian River 8–9 Hwang et al. (1987)
Gracilaria Tampa Bay <600a <12a Friedlander and Dawes (1985)
Gracilaria Massachusetts 1–2 DeBoer et al. (1978)
Gracilaria Massachusetts 17–37 Fujita (1985)

Rhizophytes
Halimeda Biscayne Bay 40 4 Biber (2002)
Halimeda GBR 12.5 Abel and Drew (1985)
Penicillus Biscayne Bay 20 2 Biber (2002)
Caulerpa West Indies 107 Williams (1984)

a Growth not saturated.
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