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Abstract

The Southern California Children’s Health Study (CHS) investigated the relationship between air pollution and

children’s chronic respiratory health outcomes. Ambient air pollutant measurements from a single CHS monitoring

station in each community were used as surrogates for personal exposures of all children in that community. To

improve exposure estimates for the CHS children, we developed an Individual Exposure Model (IEM) to

retrospectively estimate the long-term average exposure of the individual CHS children to CO, NO2, PM10, PM2.5,

and elemental carbon (EC) of ambient origin. In the IEM, pollutant concentrations due to both local mobile source

emissions (LMSE) and meteorologically transported pollutants were taken into account by combining a line source

model (CALINE4) with a regional air quality model (SMOG). To avoid double counting, local mobile sources were

removed from SMOG and added back by CALINE4. Limited information from the CHS survey was used to group

each child into a specific time-activity category, for which corresponding Consolidated Human Activity Database

(CHAD) time-activity profiles were sampled. We found local traffic significantly increased within-community

variability of exposure to vehicle-related pollutants. PM-associated exposures were influenced more by meteorologically

transported pollutants and local non-mobile source emissions than by LMSE. The overall within-community variability

of personal exposures was highest for NO2 (720–40%), followed by EC (717–27%), PM10 (715–25%), PM2.5

(715–20%), and CO (79–14%). Between-community exposure differences were affected by community location,
traffic density, and locations of residences and schools in each community. Proper siting of air monitoring stations

relative to emission sources is important to capture community mean exposures.
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1. Introduction

Children represent a population particularly vulner-

able to air pollution, since children spend more time

outdoors, are generally more active, and have immature
d.
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lungs and higher ratios of ventilation rate to body

weight than adults. The Southern California Children’s

Health Study (CHS) investigated the relationship

between air pollution and chronic respiratory health

outcomes for over 5000 children in twelve communities

in southern and central California (Gauderman et al.,

2000; McConnell et al., 1999, 2002; Peters et al., 1999).

This 10-year longitudinal study found deficits in growth

of children’s lung function associated with higher

ambient concentrations of particles (PM10, PM2.5, and

PM10�2.5), NO2, and inorganic acid vapor.

In the original CHS data analyses, ambient air

pollutant measurements from a single CHS monitoring

station in each community were used as surrogates for

personal exposures of all the children in that commu-

nity. However, central monitoring station measurements

may not be representative of personal exposures (Alm

et al., 1998; Janssen et al., 1998; Wallace, 1993) because

both children and adults spend the great majority of

their time indoors or in vehicles (Klepeis et al., 2001;

Leech et al., 2002), and higher exposures can result from

indoor sources, the ‘‘personal cloud,’’ and vehicle

emissions (Brauer et al., 2000; Fruin, 2003; Long et al.,

2000; Rodes et al., 1998; Wallace, 2000).

Moreover, the pollutant concentrations in urban areas

may vary by more than an order of magnitude on spatial

scales varying from tens to hundreds of meters. For

example, Zhu et al. (2002a, b) found that highly elevated

concentrations of CO, black carbon and ultrafine

particles at the edges of freeways dropped to back-

ground levels within approximately 200–300m down-

wind from the freeways. Hitchins et al. (2000) found the

concentrations of submicron particles dropped by about

50% 150 meters away from a road. These studies suggest

that, especially for vehicle-emitted pollutants, fixed-site

monitoring stations may not adequately represent areas

beyond their immediate vicinity, and a high spatial

resolution down to tens of meters may be required to

better characterize exposure to such pollutants.

In general there are two origins of outdoor pollution

at any given location: local source emissions (e.g. traffic)

and pollutants (both primary and secondary) trans-

ported from upwind regions. As noted above, local

traffic may contribute significantly to the highly hetero-

geneous spatial distributions of outdoor pollutants;

however, pollutants transported from upwind areas

cannot be neglected, especially particulate matter. For

example, Briggs and Gulliver (2002) reported that road

traffic typically accounted for only about 50% of total

particle emissions in the UK and secondary and

meteorologically transported particles may make up

two-thirds or more of monitored concentrations. Similar

results were found in the California South Coast Air

Basin (SoCAB), where the PM2.5 concentrations at

downwind sites were much higher than those at upwind

sites due to the secondary particles formed from gaseous
precursors transported from upwind sites (Hughes et al.,

1999; Kleeman et al., 1999). Similarly, Lim and Turpin

(2002) reported that nearly 50% of the particulate

organic matter in Atlanta, Georgia was of secondary

origin.

Although recent exposure studies have begun to use

personal monitors to directly measure subject exposures

to CO, NO2, particulate matter and air toxics (Meng et

al., 2004; Monn, 2001; Ozkaynak et al., 1996; Rodes et

al., 2001), this approach is expensive, and necessarily

limited in the number of subjects that can be studied.

For example, personal monitoring was not used in the

CHS (over 5000 children) for these reasons. However,

appropriately formulated computer models with robust

input data are an alternative approach to estimating

personal exposures, by weighting pollutant concentra-

tions in various microenvironments by the fraction of

time children and adults spend in these locations. The

overall objective of the present modeling study was to

provide, retrospectively, more accurate and comprehen-

sive assessments of the long-term average exposure of

the individual CHS children to vehicle-related pollu-

tants. The specific objectives of the present study were to

quantify the variability of within-community exposures;

to determine exposures due to local mobile source

emissions (LMSE) relative to meteorologically trans-

ported pollutants and local non-mobile source emissions

(LN-MSE); and to facilitate evaluation of relationships

between exposure and health outcomes for the indivi-

dual children in the CHS cohort.
2. Methods

2.1. Overview of modeling approach

An Individual Exposure Model (IEM) was developed

to determine personal long-term average exposures

to CO, NO2, PM10, PM2.5, and elemental carbon (EC;

PM2.5 portion) for the CHS children cohort. Five

microenvironments (residential outdoor, residential in-

door, school outdoor, school indoor, and in vehicle)

where children spend most of their time were investi-

gated. The mathematical basis for the IEM is

TWEi ¼
Ei

Ti

¼

PJ

j¼1

CiDtij

PJ

j¼1

Dtij

; (1)

where Ei is the cumulative exposure of individual subject

i; Cj is the pollutant concentration present in micro-

environment j for the time period Dtij ; Dtij is the time

spent by individual subject i in microenvironment j; J is

the total number of microenvironments; Ti is the
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exposure averaging period; and TWEi is the time-

weighted average exposure for a specific individual.

2.2. Outdoor pollutant concentrations

2.2.1. Outdoor pollutant concentrations due to local

traffic emissions

We used the CALINE4 model, developed by the

California Department of Transportation (Caltrans)

and the US Federal Highways’ Agency (Benson, 1989,

1992), to estimate local-scale pollutant concentrations

caused directly by motor vehicle emissions. The CA-

LINE4 model is a Gaussian line-source dispersion

model designed for the assessment of traffic emissions

from roads.

Annual average daily traffic counts data for freeways,

arterials, and collectors were obtained from Caltrans.

Average hourly traffic volumes were estimated using

diurnal traffic profiles and weekday/weekend volumes

differences determined from weigh-in-motion sensors on

freeways and traffic surveys on secondary roadways and

surface streets. Diesel and gasoline vehicles were

differentiated since diesel vehicles emit greater amounts

of particles and elemental carbon than gasoline vehicles.

In addition, significant differences exist for diesel and

gasoline vehicle ratios among different freeways in the

SoCAB. For example, the 710 freeway has about 7 times

as many diesel vehicles as the 405 freeway on average

(Zhu et al., 2002a, b; California Department of Trans-

portation (Caltrans), 2000). Vehicle emission factors

were obtained from the most recent California vehicle

emissions model, EMFAC 2002 (California Air

Resources Board, 2002). Hourly meteorological data

(temperature, wind speed and wind direction)

were obtained from air quality monitoring stations

operated by the South Coast Air Quality Management

District (1997).

ArcInfo (ESRI Inc.) was used to preprocess the

roadway segment and traffic count data. Caltrans

roadways were found to have as much as 250m

discrepancies from GPS-accurate TeleAtlas Roadway

Network data (Wu et al., 2004). Therefore, an algorithm

was developed within a GIS to transfer Caltrans’ traffic

activity data to the TeleAtlas Roadway Network (Wu

et al., 2004). Children’s homes, schools and air quality

monitoring stations were also geocoded using the

TeleAtlas Geocoding Service at an accuracy of 720m
for proper addresses in a dense area.

2.2.2. Outdoor pollutant concentrations due to

meteorologically transported pollutants and local non-

mobile source emissions

Our study area extended 360 km from west to east and

180 km from north to south; thus differences in ‘‘back-

ground’’ or transported pollutant concentrations, as well

as ‘‘local’’ emissions, needed to be investigated for such
a large region. ‘‘Background’’ concentrations and local

non-mobile sources were taken into account by applying

the Surface Meteorology and Ozone Generation

(SMOG) airshed model developed by Lu et al.

(1997a, b) and updated to include the MM5 prognostic

meteorology model. The SMOG model is a regional air

quality modeling system that has been applied in

simulations of surface air pollutant concentrations

and elevated pollution layers observed over the SoCAB

(Lu et al., 2003).

In the present study, the SMOG model was applied

using nested grids, with a grid resolution of 5 km� 5 km

in the SoCAB. At least 90% of the children’s residences

and all of the schools in each CHS community were

encompassed by a modeled area approximately

15 km� 15 km overlayed on that community (Fig. 1).

Seven of the twelve CHS communities were covered by

the fine resolution SMOG model domain and were the

focus of this paper, including Lancaster (LAN),

San Dimas (SDM), Upland (UPL), Mira Loma

(MRL), Riverside (RIV), Long Beach (LGB), and Lake

Elsinore (LKE).

Since we estimated local traffic emissions using the

CALINE4 model, in the SMOG simulations we

removed local mobile sources from each CHS commu-

nity, to avoid double counting of vehicle emissions. In

this study, local mobile sources included not only hot

running vehicle exhaust emissions but also brake wear,

tire wear, paved road dust, cold start exhaust, and hot

start exhaust.

Since it was impossible to run the SMOG model for an

entire year because of computational demands, two

representative 3-day episodes were chosen for the warm

and cold seasons, respectively. Intra-seasonal meteor-

ological patterns in Southern California are not highly

varied, making it reasonable to obtain regional pollutant

distributions for an entire season using simulations of a

well-chosen multiple-day episode. Moreover, given the

uncertainty and variability in the models, we used the

SMOG model outputs on a relative, rather than absolute

basis (as described below), which reduced propagation of

biases and uncertainties in the SMOG model.

2.2.3. Location-specific ambient pollutant concentrations

We calculated the ambient pollutant concentrations

for each CHS residence and school by combining the

central site ambient observations with results from the

CALINE4 line source dispersion model and the regional

SMOG airshed model using the following formula:

CL
out ¼ CL

LMSE þ aCobs; (2)

a ¼
CPE

CAE
; (3)

whereCL
outis the calculated total outdoor pollutant con-

centration at each residence and school; CL
LMSE is the
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Fig. 1. The seven CHS communities within the SMOG fine resolution domain.
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outdoor pollutant concentration at each residence and

school due to LMSE, calculated by the CALINE4 model;

Cobs is the pollutant concentration measured at each CHS

central monitoring station; CAE is the pollutant concen-

tration at the center of each community calculated by

running the SMOG model with all emissions (AE); CPE is

the pollutant concentration calculated by running the

SMOG model with partial emissions (PE), i.e. without

local mobile emissions; and a is the fraction of ambient air
pollution in a community due to meteorologically

transported pollutants and LN-MSE.

The basis for this approach is that vehicle-related

primary pollutant concentrations can be separated into,

and modeled as LMSE, and transported and LN-MSE.

In order to reduce uncertainties in the models, we used

both CHS ambient air monitoring station data and

SMOG-estimated fractions of pollutant concentrations

from transported and local non-mobile sources to

obtain ‘‘background’’ pollutant concentrations. Pollu-

tant concentrations due to local mobile emissions were

calculated by the CALINE4 model. Detailed informa-

tion on the CHS monitoring network instrumentation

and data collection and validation can be find elsewhere

(Lurmann et al., 1994; Peters et al., 1999, 2004).

2.3. Indoor pollutant concentrations

Recently, researchers (Burke et al., 2001; Wilson et al.,

2000) have addressed the importance of separating

contributions of outdoor and indoor air for personal
exposures since the EPA currently controls or regulates

only pollutants originating outdoors. In addition, in-

door and outdoor sources have different origins and

may exhibit different roles in health outcomes. For

example, Ebelt et al. (2003) found stronger relationships

between particulate matter pollution and adverse health

effects for ambient-origin particles than non-ambient

particles. To calculate indoor concentrations due to

penetration of outdoor air, we used a single-compart-

ment, steady-state mass balance equation, in which

indoor and outdoor sources can be separated (Burke

et al., 2001; Koontz et al., 1998; Koutrakis et al., 1992;

Ozkaynak et al., 1996)

Cin ¼
paCout

a þ k
þ

Qis

ða þ kÞV
; (4)

where p is the penetration coefficient; a the air exchange

rate (AER) (h�1); k the decay rate (h�1); Qis the mass

flux generated by indoor sources (mg h�1), Qis=0 in this

application; and V is the house volume (m3)

We did not include indoor sources (the second term in

Eq. (4)) for this specific application. Instead, the CHS

epidemiologists separately examined factors associated

with indoor sources as categorical variables in their

statistical models (McConnell R., Personal communica-

tion), which removed potential uncertainties that could

be introduced by including indoor sources in the

exposure modeling. For example, although limited data

on environmental tobacco smoke and pilot light usage

were available from the CHS survey, on an individual
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Table 1

Average air exchange rates (h�1) used in the IEM (Colome et

al., 1994)

Building type Cooking facility

Electric Gas without

pilot

Gas with

pilot

Single family

detached

0.4 0.5 0.7

Multi family

attached

0.6 0.9 1.2
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basis we did not have sufficient reliable information

concerning house volume, indoor source emission rates,

or activity data to calculate the specific exposures of

children to elevated indoor pollutant concentrations.

Since no indoor sources were included in the present

study, the personal exposures obtained from the model-

ing are exposures due to pollutants of ambient origin.

The penetration coefficient p and the deposition rate k

vary by particle size, season, and air exchange rate. For

all gaseous pollutants, we assumed a unit penetration

coefficient. In the case of particles, several studies

indicate that p is close to one (Clayton et al., 1993;

Liu and Nazaroff, 2001; Thatcher and Layton, 1995) for

a wide range of particle diameters, while several other

studies have presented data indicating the penetration

factor may be significantly less than one (Koutrakis

et al., 1992; Thornburg et al., 2001). The penetration

coefficients for elemental carbon, PM2.5, and PM10, were

all assumed to have a triangular distribution with

minimum, mode and maximum values of 0.9, 0.95 and

1.0, respectively (Koontz et al., 1998). This is reasonable

since homes in Southern California typically have higher

air exchange rates than the national average (Murray

and Burmaster, 1995), and penetration factors increase

to around one at approximately two or more air

exchanges per hour (Long et al., 2001).

We assumed an indoor decay rate of 1.0 h�1 for NO2
(Yamanaka, 1984), which was within the range of

0.2–1.3 h�1 found by Nazaroff et al. (1993). A zero

decay rate was assigned to CO because of its inert

properties. We adopted normal distributions for the

deposition rates of PM10 and PM2.5 with means and

standard deviations of 0.65 h�1 and 0.28, and

0.39 h�1and 0.16, respectively (Ozkaynak et al., 1994).

At present, little information is available on the

deposition rate of elemental carbon, for which we

assigned the deposition rate of PM2.5.

The air exchange rate depends on building construc-

tion, ambient conditions, and resident activities (Wal-

lace, 1996). Distributions of air exchange rates have

generally been fitted by log-normal parameters (Murray

and Burmaster, 1995). Colome et al. (1994) found in the

California Residential Indoor Air Quality Study that air

exchange rates were closely associated with home

volume, cooking type, and heating type (types of

cooking and heating facilities were co-variables for

building age); therefore, a mean air exchange rate was

assigned to each CHS home according to the house type

(single-detached and attached) and cooking facilities

(electric stove, gas stove without pilot light, gas stove

with pilot light) (Table 1).

2.4. In-vehicle pollutant concentrations

Children may be exposed to significantly higher

pollutant concentrations during their travel between
home and school, and during other times spent in

vehicles. Mainly, we used the California-specific mea-

surement data (Fruin, 2003; Fruin et al., 2004; Rodes

et al., 1998) to obtain the in-vehicle pollutant concen-

trations appropriate for California vehicle mix and

roadways. The 7 CHS communities were grouped by

traffic densities; for the communities with high traffic

densities we used in-vehicle measurements from urban

Los Angeles; otherwise, we used data from Sacramento.

The values of in-vehicle concentrations we used in the

IEM are listed in Table 2.

2.5. Time-activity patterns

2.5.1. Time-activity sequence generation

In the CHS, a time-activity survey was administered

twice a year to each child, asking them how much time

(by 5 categories) they spent outdoors in the afternoons

(12 PM–6 PM), on the weekdays and the weekend days,

and during the summer. The survey also asked the

children if they spent more than 15min daily traveling

between school and home and by what means. The

survey was more useful for classifying individual subjects

by their time activities than for providing quantitative

time activity data for use in exposure modeling.

The Consolidated Human Activity Database (CHAD)

developed by the US EPA provides 24-h time-activity

patterns based on recall diaries (US EPA, 1997). A time-

activity submodel was developed to create 24-h time-

activity series (15-min intervals) for each child in the

CHS cohort by using information from both the CHS

survey and the CHAD database. The CHS children and

selected children in the CHAD database were separately

grouped by age (9–12 and 13–18 years old), gender, and

day type (non-summer weekdays, non-summer weekend

days, and summer). The CHAD and CHS profiles for

each age, gender, and day-type were then stratified into

high and low time outdoors and time in vehicle

subgroups. The median time outdoors and time in

vehicles for the CHAD profiles are shown in Table 3.

For each of the 48 CHS categories a child was

grouped into, the corresponding CHAD distribution

was sampled. Only CHAD time-activity data collected
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Table 2

In-vehicle pollutant concentrations used in the IEM

Pollutant High-traffic community Low-traffic community Referencesa

CO 5.2 (mgm�3) 2.0 (mgm�3) 1

NO2 3� ambientb 3� ambientb 2,3

PM10 mass 60 (mgm�3) 21 (mgm�3) 1

PM2.5 mass 49 (mgm�3) 11 (mgm�3) 1

PM2.5 EC 7 (mgm�3) 4 (mgm�3) 4, 5

aReferences: 1=Rodes et al. (1998); 2=Fitz et al. (2003); 3=Shikiya et al. (1989); 4=Fruin (2003); 5=Fruin et al. (2004).
bCentral site ambient concentration.

Table 3

Median time outdoors and time in vehicles by age, gender, and day type for time-activity patterns extracted from CHAD

Age Gender Day type Median time outdoorsa

(min)

Median time in-vehiclesa

(min)

7–12 Male Non- summer week days 60 30

Non-summer weekend days 90 45

Summer 105 30

Female Non-summer week days 30 45

Non-summer weekend days 45 60

Summer 75 45

13–18 Male Non-summer week days 15 45

Non-summer weekend days 90 45

Summer 60 45

Female Non-summer week days o7b 60

Non-summer weekend days o7b 75

Summer 15 30

aTimes are truncated to nearest 15min interval. The median was the cut-point for the low and high times in these locations.
bBased on 15min interval time-activity data. For these two groups, all profiles with zero time outdoors were grouped into ‘‘low’’

category, and all profiles with greater than zero values were grouped into ‘‘high’’ category.
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by the California Air Resources Board (Wiley, 1991;

Wiley et al., 1991) and the National Human Activity

Pattern Survey (Klepeis et al., 2001) were used, to ensure

the quality and consistency of the data. Categories with

o20 profiles were combined to avoid biases caused by
sampling from too small a data set. The large number of

CHAD codes for locations and activities were aggre-

gated into the five corresponding microenvironments

(residential indoor, residential outdoor, school indoor,

school outdoor and in-vehicle) we studied. All other

locations were grouped into a single category where

residential indoor concentrations were assigned.

2.5.2. Travel time

As noted, the CHS survey asked the children if they

spent more than 15min traveling home from school (no

exact travel times were available from the survey). We

do not have sufficient individual information to

characterize the mobility of subjects other than between

their residence and school. Because the CHS children

attended public schools in their communities, their
school/home trips are generally short. Therefore, the

mobility may not be particularly important for this

cohort but obviously could be important for other

cohorts.

We used services provided by www.mapquest.com to

estimate the children’s travel time for school/home trips

using home and school address data. An apparent

discrepancy was found between the Mapquest estimates

and the survey results since about 28% of children who

reported they spent more than 15min traveling from

school to home by vehicles had travel times estimated

from Mapquest of o5min. The most likely reason for
this mismatch was that children did not go home directly

from school, but this was not accounted for in the time-

activity survey. Consequently, we used the survey results

by separating the children into two categories: o15min
and more than 15min vehicle travel time from school to

home. Fifteen minutes is an appropriate grouping

variable here since the 1995 and 2001 National House-

hold Travel Survey reported an average of 15 and 18min

for children’s travel to schools, respectively (NHTS,

http://www.mapquest.comhttp://
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2003). It was reasonable to group these children into two

broad travel categories since we sampled from the

CHAD diaries rather than using the CHS time-activity

data directly.
3. Results and discussion

3.1. Outdoor pollutant concentrations due to

meteorologically transported pollutants and local non-

mobile source emissions

Previous work has established the capabilities of the

SMOG model through comparisons of model simula-

tions against observations across the SoCAB (e.g.,

Jacobson et al., 1996; Lu and Turco, 1996; Lu et al.,

1997a, b, 2003; Jacobson, 1997). The model simulations

in this study were generally in good agreement with air

quality measurements, consistent with detailed evalua-

tions of the SMOG model performances found in

previous publications (e.g., Lu et al., 1997b). For

example, the gross errors were 38% and 34% and the

biases were �15% and �3%, for ozone predictions for

the summer and winter episodes, respectively.

Fig. 2 shows an example of the ratio of hourly CO

concentrations from transport and LN-MSE to the total

CO concentrations from all sources (Note that ‘‘trans-

port’’ here does not mean ‘‘traffic’’ but ‘‘movement’’ of

pollution from upwind regions). These ratios correlated

well inversely with traffic density, being higher at off-

traffic time and significantly lower during morning and

afternoon peak traffic hours. As expected, local traffic

contributed more to the total CO concentrations during

peak traffic times. The other directly emitted pollutants

followed diurnal patterns similar to CO.

Average hourly fractions of ambient air concentra-

tions due to transported pollutants and LN-MSE (a in
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Fig. 2. Hourly ratios of CO concentrations from transport and LN-M

communities predicted by the SMOG model for a winter season.
Eq. (2)) are summarized by community and pollutant

type in Table 4. Most PM10 and PM2.5 came from

transport and LN-MSE, in agreement with recent

studies showing that PM10 and PM2.5 act more like

regional pollutants rather than reflecting direct emis-

sions from motor sources (Levy et al., 2003). Similarly,

although more than 90% of CO in the SoCAB

originates from mobile vehicle emissions, meteorologi-

cally transported CO (including mobile source emissions

from upwind locations) and LN-MSE still comprised

over 60% of the CO concentrations at all of the CHS

communities (except Lancaster, which is located at the

northern edge of the SoCAB and receives only a small

amount of transported pollutants under the meteorolo-

gical conditions occurring in these episodes).

3.2. Outdoor pollutant concentrations due to local traffic

emissions

We used the CALINE4 model to estimate pollutant

concentrations due to LMSE at each residence and

school. The performance of CALINE4 model has been

evaluated in a number of studies (Benson, 1989, 1992;

Gramotnev et al., 2003; Loranger et al., 1995; Marmur

and Mamane, 2003). With high-quality input data, the

model can estimate pollutant concentrations within a

factor of two of measurement data. In this study, no

validation was conducted specifically for the CALINE4

model application in Southern California. Although we

predicted background pollutant concentration from the

SMOG model, we used the model outputs on a relative

basis (as ratios) instead of absolute values because of the

inconsistency in emission inventories (the SMOG model

currently uses gridded EMFAC7G outputs for mobile

source emissions, while EMFAC 2002 vehicle emissions

factors are applied to individual line sources in the

CALINE4 emission inventory). Future improvement is
Hours 
11 12 13 14 15 16 17 18 19 20 21 22 23

SE to the total CO concentrations from all sources in the CHS
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Table 4

Daily average ratios of pollutant concentrations from transport and LN-MSE to the total concentrations from all sources in each

community

Communities Season

Summer Winter

CO NO2 EC PM2.5 PM10 CO NO2 EC PM2.5 PM10

Lancaster 0.79 0.33 0.86 0.94 0.90 0.39 0.31 0.55 0.87 0.88

San Dimas 0.80 0.78 0.91 0.97 0.92 0.74 0.85 0.88 0.94 0.90

Upland 0.79 0.69 0.84 0.94 0.87 0.61 0.74 0.75 0.89 0.83

Mira Loma 0.87 0.63 0.90 0.98 0.94 0.77 0.86 0.86 0.96 0.94

Riverside 0.78 0.53 0.84 0.96 0.91 0.64 0.72 0.71 0.88 0.84

Long Beach 0.61 0.88 0.84 0.90 0.76 0.65 0.85 0.82 0.89 0.82

Lake Elsinore 0.84 0.32 0.89 0.97 0.94 0.77 0.48 0.83 0.97 0.94
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needed for consistency of emissions inputs used by

urban-scale and microscale air quality dispersion

models.

Fig. 3a shows CALINE4 estimates of hourly com-

munity mean CO concentrations due to local traffic in

winter; these CO concentrations again corresponded

well with morning and evening traffic peaks. Large

variations in local traffic effects were observed among

the CHS residences in Riverside, as illustrated in Fig. 3b.

The hourly median CO concentrations at Riverside

residences were about 0.5mgm�3, but a significant

number of residences had concentrations above 1.0 and

up to 2.8mgm�3, which suggested that certain resi-

dences in Riverside located close to freeways and major

arterials were strongly affected by vehicular emissions.

This local traffic effect was also observed in the other

communities.

3.3. Within-community variability in personal exposures

Annual average daily exposures of children in 1997

were estimated using the procedures described above.

We focused on children’s long-term exposure because

that was the primary target of the CHS study. No model

validations were possible for the IEM since no personal

monitoring data were collected during the CHS study.

The lack of such data was one of the main reasons we

conducted this retrospective exposure modeling, incor-

porating a number of factors not captured by a single air

monitoring station but which strongly influence personal

exposures, such as children’s time-activity patterns,

traffic densities on freeways and major roadways, and

children’s residential and school locations.

Model simulations were conducted for three scenar-

ios: with local traffic adjustment and time-activity

simulation (total exposure estimated using combined

local and transported pollutant concentrations); without

local traffic adjustment but with time-activity simulation
(total exposure estimated using air monitoring station

data); and without local traffic adjustment or time-

activity simulation (annual average ambient concentra-

tions). Personal exposures estimated for these three

scenarios are plotted in Fig. 4, where differences between

the first and second scenarios reflect within-community

variability due to local traffic effects, while differences

between the second and third scenarios reflect within-

community variability due to time-activity patterns,

housing characteristics and air exchange rates.

For illustration purposes, only results for CO and

PM10 are shown.

Local traffic significantly increased within-community

variability for exposure to CO, NO2, and PM-associated

pollutants, especially at communities with heavy traffic

such as Long Beach, Riverside and San Dimas. The

overall within-community variability of personal expo-

sures (including local traffic effects and time-activity

differences) were highest for NO2 (720–40%), followed
by EC (717–27%), PM10 (715–25%), PM2.5

(715–20%), and CO (79–14%), where the range are
across seven CHS communities. Local traffic alone

contributed most to CO and NO2 exposures, but less to

PM-related exposures.

Significant within-community variability due to chil-

dren’s time-activity patterns was also observed for all

pollutants except CO. By affecting indoor concentra-

tions, pollutant penetration, decay or deposition, as well

as air exchange rate, all contributed to the within-

community variability due to time-activity patterns.

However, since we assumed a unit penetration rate and

zero decay rate for CO, indoor concentrations were the

same as outdoor and only in-vehicle CO exposures

contributed to the within-community variability due to

time-activity patterns. The within-community variability

of exposure due to children’s time-activity patterns

followed the pattern of the total within-community

variability with the highest for NO2 (718–25%),
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Fig. 3. CALINE4 model-predicted (a) hourly community-mean CO concentrations in the seven CHS communities for the winter

season; (b) distribution of CO concentrations at all residences in Riverside at 7AM for the winter season, the mean concentration of

which is circled in (a).
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followed by EC (716–20%), PM10 (712–18%), PM2.5

(710–15%), and CO (73–9%).

3.4. Between-community differences in community mean

exposures

Differences in community mean exposures were

impacted by community location in the SoCAB (e.g.

source vs. receptor areas), traffic density, locations of

residences and schools within a community, and time-

activity patterns of the children in each community.

Since this study was restricted to the Southern Califor-

nia region, children’s time-activity patterns and the
housing characteristics associated with exposure (e.g. air

exchange rate) might not differ greatly between the CHS

communities within the SoCAB. However, community

location, traffic density, and the relative locations of

residences and schools differed significantly between the

seven communities. For example, Long Beach was a

source site, while Riverside was a typical downwind

receptor site. Moreover, Long Beach is crossed by

several freeways with high traffic density, such as the

I-405, I-710, I-605 and Artesia Freeways, while for

Lancaster, State Highway 14 was the only major arterial

across the community. Residence and school locations

also varied among the communities. Riverside had the
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Fig. 4. Estimated annual average exposures of the CHS children in 1997 under three scenarios. , exposure calculated using combined

local and meteorologically transported pollutant concentrations; , total exposure calculated using monitoring station data; , annual

average ambient concentrations. Note: no CO exposure assessment was conducted for UPL and LKE due to the lack of measurement

data.
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highest number of children living close to freeways and

had a school (J.W. North High School) located about

200m from the I-215 Freeway.

All of the above factors affected the community mean

exposures and caused them to differ from the ambient

concentrations at the corresponding central monitoring

station. For CO, the community mean personal

exposure ranked RIV (1.8)4LGB (1.7)4SDM
(1.5)4MRL (1.0)4LAN (0.7) (community mean ex-
posure in mgm�3). Although Lancaster and Mira Loma

had similar ambient CO concentrations at the CHS

station, higher traffic density in Mira Loma led to a

higher mean CO exposure than for Lancaster. For

PM10, the community mean exposure ranked MRL

(36.4)4RIV (28.0)4SDM (26.8)4LGB (26.1)4UPL
(21.1)4LKE (15.7)4LAN (11.6) (in mgm�3). Although

Long Beach had a lower annual average PM10

concentration than Upland (35.5 vs. 38.8 mgm�3) at
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the CHS station, it had both a higher traffic density and

a higher fraction of residences living close to freeways

than Upland, which increased the community mean

PM10 exposure significantly.

For EC, the community mean exposure ranked LGB

(1.4)4SDM (1.2)ERIV (1.2)4MRL (1.0)EUPL
(1.0)4LKE (0.5)4LAN (0.4) (in mgm�3). Riverside

had a lower annual average EC concentration than Mira

Loma and Upland (1.0 vs. 1.2 and 1.1) at the CHS

station, but a higher community mean EC exposure. The

Riverside station was located in the agriculture fields at

the University of California, Riverside, where there was

little traffic, which made the station a good indicator of

background pollutant concentrations instead of a

representative monitor of the community mean expo-

sure. This was especially true given the fact that a

significant number of CHS children (34) in Riverside

lived within 150m of freeways and, as noted, the J.W.

North High School was located only 200m from

the freeway.

3.5. Personal exposure due to different sources

We estimated personal exposure due to pollutant

transport and LN-MSE, LMSE, and in-vehicle expo-

sures (Fig. 5). For CO, transport and LN-MSE

contributed most to the total exposures, while LMSE

and in-vehicle exposures explained most of the varia-

bility in personal exposures. Similar results were

observed for NO2 and EC except that a higher fraction

of variability was explained by pollutant transport and

LN-MSE (at Riverside LMSE contributed the most to

the total exposures). For PM10, as we expected,

transport and LN-MSE contributed most, and also

accounted for a significant amount of variability in the

total personal exposures. LMSE only contributed

significantly to the exposure variability at Riverside,

Long Beach, San Dimas and Upland.

3.6. Personal exposure in different microenvironments

Indoor locations were still found to be the most

significant microenvironments for exposures to all

pollutants. For CO, residential indoor, in-vehicle, school

indoor, exposure occurring elsewhere, residential out-

door, and school outdoor accounted for 50–70%,

12–20%, 6–20%, 7–10%, 3–4%, and 1–3% of the total

exposures, respectively, for the seven communities

studied. For EC, residential indoor, in-vehicle, school

indoor, exposure occurring elsewhere, residential out-

door, and school outdoor accounted for 36–56%,

21–38%, 7–26%, 7–9%, 4–6% and 2–5% of the total

exposures, respectively, for the seven communities.

Consistent with the findings of Fruin et al. (2004), in-

vehicle EC exposure was approximately one third of the

total EC exposures, indicating that accounting for time
spent in vehicles was essential in characterizing expo-

sures to elemental carbon.
4. Conclusions

This study integrated two distinct air quality models

into a new IEM in order to estimate comprehensive

exposure due to pollutants arising from transport,

LN-MSE and LMSE, and to investigate quantitatively

the contributions of these sources to total personal

exposures. We found that for this children’s cohort,

local traffic significantly increased within-community

variability for exposure to CO, NO2, and PM-associated

pollutants, especially in communities with heavy traffic.

Exposures to PM-associated pollutants were impacted

more by transport and LN-MSE at all communities

except Riverside where a larger number of children lived

close to freeways and major arterials. Significant within-

community variability due to time-activity pattern

differences was observed for all pollutants except CO

(since we assumed a unit penetration and zero decay rate

for CO). Time spent in vehicles was more important in

determining exposures to elemental carbon than for

other pollutants.

Between-community exposure differences were af-

fected by community location, traffic density, locations

of residences and schools, and time-activity patterns of

the children in each community. The ambient pollutant

concentrations measured by the CHS central monitoring

stations did a reasonable job of capturing the range of

residence and school outdoor concentrations at Lan-

caster, Lake Elsinore, Upland, and Mira Loma, but not

at San Dimas, Riverside, and Long Beach. This

monitoring station ‘‘siting’’ issue has implications for

epidemiological studies since many of these studies use

ambient concentrations as surrogates for personal

exposures. As shown here by the example of the

Riverside CHS station, a monitoring station located

too far away from significant traffic sources will not be

representative of the overall community exposures to

vehicle-related pollutants. Conversely, a station located

too close to major traffic sources will overestimate

personal exposures in that community.
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