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Abstract

A Bayesian network consists of a graphical structure and a probabilistic description of the relationships among variables in
a system. The graphical structure explicitly represents cause-and-effect assumptions that allow a complex causal chain linking
actions to outcomes to be factored into an articulated series of conditional relationships. Each of these relationships can then be
independently quantified using a submodel suitable for the type and scale of information available. This approach is particularly
useful for ecological modelling because predictable patterns may emerge at a variety of scales, necessitating a multiplicity of
model forms. As an example, we describe a Bayesian network integrating models of the various processes involved in eutrophica-
tion in the Neuse River estuary, North Carolina. These models were developed using a range of methods, including: process-based
models statistically fit to long-term monitoring data, Bayesian hierarchical modelling of cross-system data gathered from the lit-
erature, multivariate regression modelling of mesocosm experiments, and judgements elicited from scientific experts. The ability
of the network to accommodate such a diversity of methods allowed for the prediction of policy-relevant ecosystem attributes not
normally included in models of eutrophication. All of the submodels in the network include estimates of predictive uncertainty in
the form of probability distributions which are propagated to model endpoints. Predictions expressed as probabilities give stake-
holders and decision-makers a realistic appraisal of the chances of achieving desired outcomes under alternative nutrient manage-
ment strategies. In general, the further down the causal chain a variable was, the greater the predictive uncertainty. This suggests
that a compromise is necessary between policy relevance and predictive precision, and that, to select defensible environmental
management strategies, public officials must adopt decision-making methods that deal explicitly with scientific uncertainty.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Scientists are often asked to contribute to the dif-
ficult process of environmental management and
decision-making by providing a predictive link be-
tween management actions and ecosystem response
(Jorgensen, 1995; Clark et al., 2001). However, this
link may be a complex causal chain, the entirety of
which rarely falls within a single, coordinated re-
search project (Carpenter, 1996). While there have
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been recent efforts to expand the scope of projects to
encompass all processes relevant to a particular en-
vironmental problem (Carpenter et al., 1995; Kinzig,
2001), usually groups of independent researchers
study different system features as dictated by their
own scientific interests (Norton, 1998). This situation
makes it difficult to directly apply the results of sci-
entific studies to the task of forecasting ecological
change.

Ecological models represent attempts to combine
the understanding gained from multiple projects
into a single predictive framework (Jorgensen, 1993;
Pielke, 2001; Turner, 2001). Most models do this by
endeavouring to simulate all of the physical, chemi-
cal, and biological processes occurring in the system
at a pre-determined model scale (Fitz et al., 1996).
However, depending on the nature of these processes
and the design of previous scientific studies, the most
predictable relationships among different sets of vari-
ables may emerge at a variety of spatial, temporal,
or functional scales (Levin, 1992). Therefore, current
scientific knowledge might be better represented if
each relationship were described at the level of de-
tail at which regular patterns of behaviour have been
identified, rather than at a scale that is identical for
all processes (Jorgensen, 1995).

Given the diversity of scales at which ecosystem
patterns may emerge, a serious challenge for eco-
logical modellers is to integrate quantitative descrip-
tions of these patterns into coherent predictive mod-
els (Levin, 1992; MacNally and Quinn, 1998; Pace,
2001). Methodologies are required that allow repre-
sentation at multiple scales and in a variety of forms,
depending on available information. There is also a
need to assess how uncertainties in each component of
the model translate to uncertainty in the final predic-
tions (Reckhow, 1994b; Reichert and Omlin, 1999).
Finally, such models must be able to be easily up-
dated to reflect evolving scientific knowledge and pol-
icy needs (Walters, 1986).

We have found Bayesian networks (Pearl, 1988;
Jensen, 1996) to be a promising method for per-
forming integrated ecological modelling (Varis et al.,
1994). The graphical structure explicitly represents
cause-and-effect assumptions between system vari-
ables that may be obscured under other approaches.
These assumptions allow the complex causal chain
linking management actions to ecological conse-

quences to be factored into an articulated sequence
of conditional relationships. Each of these relation-
ships can then be quantified independently using an
approach suitable for the type and scale of informa-
tion available. Probabilistic functions describing the
relationships allow key known or expected mecha-
nisms to be represented without the full complexity,
or information needs, of highly reductionist models.
To demonstrate the application of the approach, we
develop a Bayesian network representing eutrophica-
tion in the Neuse River estuary, North Carolina from
a collection of previously published submodels. We
then use this synthesis model to generate probabilis-
tic predictions of ecosystem response to alternative
nutrient management strategies.

2. Bayesian networks

A Bayesian network begins with a graphical depic-
tion of the relationships among the most important
variables in the system of interest. In this depiction,
the variables are represented by round nodes, and a
dependence between one variable and another is rep-
resented by an arrow. The conditional independence
implied by the absenceof a connecting arrow be-
tween any two nodes greatly simplifies the modelling
process by allowing separate submodels to be devel-
oped for each relationship indicated by thepresence
of an arrow. These submodels may be derived from
any combination of process knowledge, statistical cor-
relations, or expert judgement, depending on the in-
formation available about that particular relationship
(Varis, 1995). This is a practical and realistic approach
to ecological prediction, the merits of which are well
described byPeters (1991).

Unlike most integrated environmental modelling,
however, Bayesian networks utilise probabilistic,
rather than deterministic, expressions to describe the
relationships among variables. This is an essential
characteristic of an ecosystem model if predictions
are to be used to guide decision-making (Clark et al.,
2001). In a Bayesian network, each dependence indi-
cated by an arrow represents a conditional probability
distribution that describes the relative likelihood of
each value of the down-arrow node, conditional on ev-
ery possible combination of values of the parent nodes.
A node that has no incoming arrows is said to have no
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parents, and such a variable can be described prob-
abilistically by a marginal (or unconditional) proba-
bility distribution. The graphical network, therefore,
constitutes a description of the probabilistic relation-
ships among the system’s variables that amounts to
a factorisation of the joint distribution of all variables
into a series of marginal and conditional distributions.

The realisation that a graphical network has im-
plications for the dependence structure among vari-
ables makes working with probabilistic description of
complex systems much easier and has stimulated de-
velopments in such models by researchers in artifi-
cial intelligence (who often use the term “belief net”)
(Pearl, 1988), decision analysis (where the term “influ-
ence diagram” is common) (Oliver and Smith, 1990),
and statistics (where “graphical model” is often used)
(Spiegelhalter et al., 1993). These efforts have led to
significant advances in the use of Bayesian networks
for uncertainty analysis, system diagnosis, experimen-
tal design, and automated learning (Jensen, 2001).

Bayesian networks are only beginning to be applied
by ecological modellers (Varis and Kuikka, 1999),
and applications to date include fisheries assessment
(Lee and Rieman, 1997; Kuikka et al., 1999), forest
regeneration (Haas et al., 1994), and habitat restora-
tion (Rieman et al., 2001). Most of these studies have
either encoded conditional distributions directly, usu-
ally using discrete (or discretised continuous) vari-
ables, or have used off-line stochastic simulations to
generate distributions of uncertain results, which were
then discretised for subsequent representation in the
network model (e.g.Lee and Rieman, 1997; Kuikka
et al., 1999; Dorner et al., 2001; Sahely and Bagley,
2001). We take a different approach, however, by us-
ing a Bayesian network as the organising structure for
a set of separately developed, continuous, functional
models, each of which is capable of real-time solution
in the network (see alsoVaris and Kuikka, 1997). This
approach can be expected to lead to greater exploita-
tion of the representational and computational advan-
tages of Bayesian networks, as well as more effective
use of available scientific knowledge.

3. Problem description

The Neuse River estuary, North Carolina (Fig. 1),
has been experiencing severe consequences of eu-

Fig. 1. The Neuse River estuary, North Carolina, indicating the
region of concern in the present study.

trophication in recent years including excessive algal
blooms, low levels of dissolved oxygen, declining
shellfish populations, large fish kills, and outbreaks
of toxic micro-organisms. These problems have led
to the Neuse River being declared one of the 20
most threatened rivers in the United States (ARF,
1997). The Neuse River estuary has also been listed
on the federal list of impaired waters under section
303(d) of the Clean Water Act. Problems in the estu-
ary have been attributed to the high nutrient loading
that generally results from the kinds of changes that
have occurred in the watershed over the past several
decades (Paerl et al., 1995). The upper portion of the
Neuse River drainage basin includes much of North
Carolina’s Research Triangle (defined by the cities
of Raleigh, Durham, and Chapel Hill), an area that
has experienced economic prosperity and rapid pop-
ulation growth since the 1970s. Population expansion
and development are also occurring in lower portions
of the basin with an increasing coastal population
and a growing commercial animal-farming industry.
Treated municipal wastewater, urban runoff, confined
animal feeding operations, agricultural fertilisers, and
atmospheric deposition are considered to be impor-
tant sources of nutrients to surface waters draining to
the Neuse River.

As in many other marine systems, nitrogen has been
identified as the pollutant of concern in the estuary
because it is the nutrient believed to be stimulating the
excessive growth of algae that is at the root of other
ecological problems. Therefore, the United States
Environmental Protection Agency (USEPA) has re-
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quired that the State of North Carolina implement
watershed-based pollutant controls to limit nitrogen
inputs to the estuary. The degree of reduction required
is to be determined according to the establishment of
a Total Maximum Daily Load (TMDL) for nitrogen.
A TMDL is an estimate of the maximum pollutant
loading to a water body that will still allow it to meet
water quality standards and attain its designated uses
(Office of Water, 1999). Over the next 10 years, thou-
sands of TMDLs for pollutants must be developed
for waterbodies across the nation (National Research
Council, 2001).

Typically, the determination of a TMDL is based
on the results of a deterministic simulation model that
predicts water quality characteristics, such as chloro-
phyll a level or dissolved oxygen concentration, at
a fine spatial and temporal scale (Office of Water,
1997). While these variables may be useful indicators
of water quality problems, they have relatively little
meaning to the general public and decision-makers.
Instead, these groups are more interested in the occur-
rence of harmful algal blooms, fish kills, and shellfish
mortality. At the scale employed by most simula-
tion models, the ecological processes associated with
these attributes are too complex or stochastic to be
characterised mathematically. However, the aggre-
gate causal relationships are well known, and smaller
scale dynamics might be captured probabilistically.
Therefore, there is promise that a flexible modelling
tool, that can link processes occurring at multiple
scales, might lead to better TMDL decisions by more
directly addressing stakeholder objectives.

4. Development of causal structure

The first step in constructing a Bayesian network is
the development of the graphical structure indicating
the relevant variables and dependencies. This graphi-
cal representation is important because it provides the
basis for determining the degree of decomposition to
be used in subsequent construction of mathematical
models (Varis and Kuikka, 1997). Development of the
graphical structure for the Neuse eutrophication net-
work consisted of two distinct tasks. The first was to
determine the attributes of the estuarine system for
which decision-makers would like to see predictions.
Because decisions by public officials should represent

the views of the public, we elicited these attributes
from a set of stakeholders who care about the health of
the Neuse estuary. The second task consisted of link-
ing these variables to nitrogen inputs using a causal
network diagram drawn in conjunction with estuarine
research scientists.

4.1. Stakeholder elicitation

Identification of measurable ecosystem variables
that are meaningful to stakeholders and to their public
officials was the first task of our modelling study. The
intent was to establish those attributes that would be
used by the public and decision-makers to evaluate
the success of the nutrient management program and
should therefore be predicted by the model. While
this may seem like an obvious starting point for the
modelling process, it is often overlooked in the rush
to gather and analyse data or write computer simula-
tion programs (Reckhow, 1994a). Inadequate atten-
tion to this step may lead to an incomplete analysis
or an analysis of the wrong problem with respect to
important policy interests (Reckhow, 1994a).

Details of the stakeholder elicitation effort are de-
scribed byBorsuk et al. (2001a). Summarised results
(Table 1) show that the public cares about attributes
of water quality and ecosystem health beyond those
generally predicted by traditional simulation models.
These include water quality measures such as water

Table 1
Ecosystem attributes of concern to Neuse River stakeholders

Water quality
Oxygen levels
Chlorophyll a levels
Taste
Odour
Water clarity
Sandy bottom
Algal toxins

Biological quality
Algal blooms
Fish and shellfish abundance and health
Species diversity
Human-induced fishkills
Submerged aquatic vegetation

Human health
Fecal coliform
Toxic micro-organisms
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clarity, taste, lack of odour, levels of chlorophyll a
and dissolved oxygen, and presence or absence of
algal toxins. Important biological quality indicators
include algae levels and presence of excessive, sub-
merged aquatic vegetation, as well as abundance,
diversity, and health of fish and shellfish. Concerns
regarding human health include the presence of faecal
coliform and toxic micro-organisms includingPfies-
teria piscicida. Rather than forcing decision-makers
to extrapolate traditional water quality variables to
these ecological attributes, it is the goal of this project
to predict them directly using alternative model types
integrated into the Bayesian network.

4.2. Network development

Development of the causal diagram linking nitro-
gen inputs to meaningful attributes began with a com-
prehensive survey of the relevant scientific literature.
With the primary attributes of interest defined by the
stakeholder process, it was natural to begin by iden-
tifying the nodes immediately preceding them in the
causal chain, then nodes preceding them, and so on,
back to the model inputs, including nitrogen loading.
This process was successful in producing a network
linking causes and effects that represented the current
published opinion of scientists studying the Neuse, but
the exact quantitative nature of the relationships was
not clear. Therefore, the scientists themselves were
consulted for additional information.

Using our literature-based graphical model as a
starting point for discussion, we held a series of
meetings with researchers to explain the Bayesian
network approach and to get their input on the causal
diagram (Borsuk, 2001). Almost invariably, they were
intrigued by this alternative way of modelling the sys-
tem and provided extensive information on available
data sources and additional contacts. However, all the
scientists also had their own “pet processes” that they
wanted to see included in the model, usually related
to the focus of their own research. These ranged from
the role of algal grazers in controlling algal density to
the effect of a “mid-estuary gyre”. For the purposes
of completeness, these were all tentatively included,
resulting in a graphical model with 35 nodes and 55
arrows. Clearly some simplification was necessary to
make the problem tractable and to keep it consistent
with available data.

The inclusion of many important environmental
variables and processes may, in principle, produce
more precise predictions. If the values of those vari-
ables and the rates of the processes are well known,
then predictions can be conditioned on them, thereby
reducing uncertainty (Reichert and Omlin, 1997).
However, if the variables are stochastic or uncontrol-
lable and must be described by marginal probability
distributions themselves, then their inclusion is not
very useful for informing management decisions
(Levin, 1985). Therefore, to design the most parsimo-
nious yet realistic model, each node in the network was
reviewed to determine if the variable it represented
was either: (1) controllable, (2) predictable, or (3)
observable at the scale of the management problem.
If not, then the node was removed from the network.

The simplification strategies described above were
effective in reducing the network down to 14 nodes and
17 arrows (Fig. 2, centre). Ecosystem attributes con-
sistent with those identified in the stakeholder study
include algal density, as measured by chlorophyll a
concentration, abundance of the toxic micro-organism
Pfiesteria, fish population health, frequency of fish
kills, and shellfish abundance. Other variables that the
stakeholders would have liked to have seen included
in the network, such as taste, odour, aquatic vegeta-
tion, and faecal coliform concentrations, were deter-
mined to not be affected by nitrogen control, the only
management action currently under consideration. Be-
cause variables and relationships are only included in
the model if they contribute to our ability to predict
ecosystem attributes of policy relevance, the model
structure can be best explained by starting with these
variables and proceeding in the “up-arrow” direction.

4.3. Network description

According to the stakeholder study (Table 1), fish
kills are an attribute of significant public interest. The
current scientific belief is that fish kills are caused by
a combination of low oxygen bottom water (hypoxia)
and wind conditions that force that bottom water to
the surface, trapping fish along the shores where they
suffocate. Fish are generally more susceptible if they
are already in poor health. Therefore, the occurrence
of fish kills depends on the health of the fish popu-
lation, the temporal extent to which the estuary ex-
periences hypoxic conditions, and the frequency of
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Fig. 2. Centre figure: graphical representation of the full Bayesian network for Neuse estuary eutrophication. Variables are indicated
with rounded nodes, and causal relationships are indicated with arrows. Surrounding insets: networks representing submodels of the main
network. Shaded nodes indicate model parameters. Double-headed, dashed arrows indicate a correlation between marginal variables that
may be the result of exogenous factors, rather than causal influence.

cross-channel wind conditions. The temporal extent of
hypoxia is determined by the pattern of bottom wa-
ter oxygen concentrations. Oxygen concentration is
controlled by both the rate of sediment oxygen de-
mand by bacterial respiration and the duration that the
bottom waters are separated from the surface due to

salinity stratification (Stanley and Nixon, 1992; Paerl
et al., 1998). Stratification begins to set up whenever
cross-channel winds are calm enough to avoid mixing
for more than one day. Therefore, the frequency of
strong cross-channel winds is an appropriate immedi-
ate cause of stratification.
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Sediment oxygen demand is dependent on the
amount of organic matter available in the sediments
(Rizzo and Christian, 1996). In a eutrophic estuary
such as the Neuse, most of the sediment organic mat-
ter is internally derived via algal carbon production
(Alperin et al., 2000). Because regular measurements
are not made of the sediment organic carbon content,
this intermediate variable is not included in the model,
and a direct link is shown between carbon production
and sediment oxygen demand (Fig. 2, centre). This
is an instance where the aggregate effect may be bet-
ter known than the sum of a number of individual,
uncertain processes.

Algal carbon production is related to algal density,
although water temperature also plays an important
role (Mallin et al., 1991). Additionally, light inten-
sity and photic depth have been shown to be signif-
icant factors (Cole and Cloern, 1987; Boyer et al.,
1993). However, while these are both observable vari-
ables (in that they can be measured), they are neither
manageable by nitrogen controls nor predictable from
other known factors (as water temperature is from the
seasonal cycle). Therefore, they are not explicitly in-
cluded, and the variability they cause becomes part of
the predictive uncertainty.

Algal density in the Neuse estuary is controlled
by nitrogen inputs, water temperature and river flow
(Mallin et al., 1993; Pinckney et al., 1997) which, for
the purposes of the present analysis can be consid-
ered marginal input nodes. To predict the effects of fu-
ture nitrogen reductions, river nitrogen concentration
will be adjusted accordingly. Other sources of nitro-
gen to the estuary, including atmospheric sources and
groundwater, are not considered in this analysis be-
cause the TMDL process only regulates nitrogen in-
puts from the river.

Another attribute of importance to stakeholders is
fish population health. While a number of factors
may affect the health of the fish population, only the
effects of hypoxia can be controlled through nitrogen
reductions. Extensive hypoxia can diminish the health
and productivity of the fish population and make it
more vulnerable to both disease and episodic fish kill
events. The situation is similar for shellfish. How-
ever, because shellfish are sessile, it is not only their
health, but also their abundance, that is threatened by
long-term exposure to low oxygen conditions. There-
fore, both the duration and severity of hypoxia are

important considerations, prompting the arrows from
nodes representing both duration of stratification and
dissolved oxygen concentration.

The toxic dinoflagellate,P. piscicida, is a concern to
the public at least in part because of the large amount
of media attention it has received in recent years. It
has been blamed for having a role in the occurrence
of fish kills both by directly attacking the fish and
by making them more susceptible to harsh conditions
(Burkholder, 1999).Pfiesteriahas also been found to
adversely impact the health of laboratory researchers
studying the organism by causing respiratory and neu-
rological distress (Glasgow et al., 1995). However, the
potential threat to people exposed toPfiesteriaunder
natural conditions is highly controversial (Griffith,
1999), and the distinct role the organism plays in fish
kills is uncertain (Stow and Borsuk, 2003). Many
of the scientists we spoke with felt thatPfiesteria
was just one of many stressors that affect fish, and if
Pfiesteriawere not present in the estuary, other op-
portunistic organisms would be. Therefore, to satisfy
the interests of the stakeholders,Pfiesteriaabundance
was included as a variable in the model. However,
it was not explicitly linked to fish population health
or fish kills, nor was a human health effect included.
Perhaps as more laboratory research, fieldwork, and
health studies are conducted in the future, the role of
Pfiesteriain the network can be modified accordingly.

Pfiesteriais a heterotrophic dinoflagellate that does
not synthesise photopigments. However, it can capture
chloroplasts from algal prey to produce a photosyn-
thate for use in meeting its nutritional requirements,
a process called cleptochloroplasty (Burkholder and
Glasgow, 1997). Therefore, when in its non-toxic
zoospore stage,Pfiesteria’s primary food source is
phytoplankton (Burkholder et al., 1995), suggesting a
linkage between the zoospore and its prey in natural
settings. It is possible that other factors, such as nutri-
ents, mixing, and light, may also control the density of
Pfiesteriaeither directly or indirectly by affecting phy-
toplankton biomass and species composition. These
causal factors will be explored in more detail below.

5. Quantification of conditional relationships

With the primary causal relations leading from ni-
trogen inputs to publicly meaningful ecosystem at-
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tributes established, the next step was to quantify all
of these relations with conditional probabilities. To do
this, we adopted the approach ofPearl (2000)in which
the conditional distribution of a variableX is derived
using a functional relationship of the form:

X = f(ppp, θ, ε) (1)

whereppp is the set of immediate causes (or parents) of
X, θ is a vector of parameters of the function relating
ppp andX, andε is an error (or disturbance) term.

The interpretation ofEq. (1)is that causal relation-
ships representing physical mechanisms can described
by mathematical functions. Probabilities are then in-
troduced by regarding the arguments of the function
as random variables, to which probability distributions
are assigned. The distribution of the parameter setθ

represents knowledge uncertainty about the parameter
values from a Bayesian perspective and might be de-
rived through a combination of prior judgement and
statistical inference (Bernardo and Smith, 1994). The
distribution of the disturbance termε represents the
effects of exogenous factors that, for reasons of either
choice or ignorance, have not been explicitly included
in the model (Pearl, 2000). A common assumption
is thatε is an independent and identically distributed
Gaussian random variable with zero mean and speci-
fied variance, although this is not a requirement.

A functional characterisation of causal relationships
in a Bayesian network leads to the same advantages
of recursive decomposition as the strictly distribu-
tional forms. However, specifying functional equa-
tions among variables, rather than conditional distri-
butions, is a task more naturally consistent with both
the theory and routine practice of process-oriented en-
vironmental science. Still, in practice it may be diffi-
cult to identify the causal parents of an environmen-
tal variable, let alone to specify the functional form
of the causal relationship and the joint distribution of
its parameters. The disturbance term,ε, must also be
characterised. Assuming Gaussian distributions may
simplify matters, but unless the functionf is linear, the
consequent distribution ofX will not be Gaussian. Sets
of distributional forms, called conjugate families, exist
that yield analytical solutions, but in most cases, model
calculations will need to be done using a simulation
procedure, such as Monte Carlo or Latin Hypercube.

Multiple methods for specifying the terms inEq. (1)
were used for the various eutrophication submodels,

depending on available knowledge and data. The de-
velopment of these individual submodels has been
described in previous papers, so each is summarised
only briefly in the sections that follow. Our focus here
is on the integration of these submodels into one co-
hesive network. For simplicity, each of the following
sections is titled by the function relating each variable
to its parents, disregarding the parameter and dis-
turbance terms. However, these terms are discussed
and shown explicitly as additional nodes in the more
detailed graphical representations of the submodels
(Fig. 2, insets).

5.1. Algal density= f(water temperature, river flow,
nitrogen concentration)

The relationship between algal density, as measured
by chlorophyll a concentration, estuarine location, wa-
ter temperature, and incoming Neuse River flow and
total nitrogen concentration was developed using a re-
gression model fit to approximately 5 years (mid-1994
through 1999) of biweekly monitoring data (Borsuk
et al., 2003). Model results indicated a positive rela-
tionship between chlorophyll and nitrogen input con-
centration for all locations in the estuary, with the
strongest relationship in the lower section, where ni-
trogen is most likely a limiting factor for algal growth
(Qian et al., 2000). Increased river flow was found to
generally exert a negative effect on chlorophyll con-
centration at upstream locations, possibly due to short-
ened residence times, lowered salinity, and increased
turbidity. However, at mid and lower estuary locations,
higher flow was associated with higher chlorophyll for
flow values below an empirically estimated breakpoint
but with lowered chlorophyll at flows above this value.
This may be the result of increased nitrogen delivery
from upstream sections at intermediate flow values and
a flushing effect at higher flows. A positive relationship
between chlorophyll concentration and water temper-
ature was found for all estuarine sections. As mea-
sured by theR2 value, the model was found to resolve
55% of the variation in log-transformed chlorophyll
concentration—a level of accuracy comparable with
more complex simulation models (Stow et al., 2003).

The regression model of algal density has a nat-
ural consistency with the general form ofEq. (1).
Model parametersθ consist of the regression coef-
ficients and can be described by a joint distribution
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with mean vector and covariance matrix estimated
by the regression procedure. Further, the root mean
squared error (RMSE) of the regression model char-
acterises the probabilistic error term, assumed to be
Gaussian with mean zero and a standard deviation
equal to the RMSE. Because the model is linear and
Gaussian, the parameter distribution derived from the
classical regression procedure is equivalent to the pos-
terior parameter distribution that would result from a
Bayesian analysis with non-informative priors (Lee,
1997).

Although algal density, itself, may be an important
policy variable, of particular concern is the frequency
with which chlorophyll a levels exceed the state water
quality standard of 40�g/l. Therefore, a variable rep-
resenting this exceedance frequency is shown explic-
itly in the subnetwork (Fig. 2a) and its distribution can
be derived from the distribution of chlorophyll values
as described byBorsuk et al. (2002b).

5.2. Pfiesteria abundance= f(algal density)

The factors potentially controlling the presence of
Pfiesteriacells in the water column were investigated
by Pinckney et al. (2000)using a set of mesocosm
experiments. These experiments were designed to test
the response ofPfiesteria zoospores to a range of
environmental conditions and potential prey species.
Results showed that the density ofPfiesteria-like
cells was positively correlated with phytoplankton
productivity and total phytoplankton biomass (as
measured by chlorophyll a). These values were higher
for mesocosms with nitrate additions, supporting the
belief that the phytoplankton community is nitro-
gen limited. Apart from the correlation with algal
biomass and productivity,Pfiesteria-like cells showed
no additional significant response to nutrient, sedi-
ment, or mixing treatments in any of the experiments.
Nor were Pfiesteria-like cells significantly corre-
lated with diatom biomass. These results suggest that
Pfiesteria-like zoospores are not separately stimulated
by high nutrient concentrations, water turbulence, or
the presence of benthic cysts, but, rather, track the
abundance of their prey resources.Fensin (1998)also
found a positive correlation betweenPfiesteria-like
zoospores and phytoplankton biomass (as chlorophyll
a) in field samples collected from the Neuse estuary
during 1994 and 1995.

We used the data of Pinckney et al. to develop
a submodel relating algal density andPfiesteria-like
zoospores (Borsuk, 2001). Data collected by Fensin
were not available for our analysis. Our results showed
thatPfiesteria-like cell counts only reach levels of con-
cern during the summer season. Therefore, the prob-
abilistic relationship between algal density andPfies-
teria was quantified using data collected in the sum-
mer only. This relationship was found to be approxi-
mately linear after a log-transformation of both vari-
ables, so parameters were estimated using ordinary
least-squares regression. TheR2 value of the model
indicated that algal density resolves approximately
83% of the variability in transformed summertime
Pfiesteria-like cell counts.

In expressing concern overPfiesteriaabundance,
stakeholders were probably particularly concerned
about densities that are potentially harmful. A level
of 250 cells/ml of toxic zoospores has been cited as
a concentration sufficiently high to be lethal to fish
(Burkholder et al., 1995). Therefore, the frequency
of daily cell densities above 250 cells/ml in the sum-
mer season was included as a separate variable in the
network. Because the cell counts recorded by Pinck-
ney et al. include allPfiesteria-like zoospores, both
toxic and non-toxic, the results of our model can be
considered an upper estimate of toxic forms.

The Pfiesteriasubmodel can be represented as a
small Bayesian network with parameters shown ex-
plicitly as marginal nodes (Fig. 2b). Again, we take
the parameter uncertainty to be described by the
Bayesian posterior distribution under non-informative
priors, which, because of the linear model construc-
tion in this case, is multivariate normal with mean
vector and covariance matrix estimated by the regres-
sion results. The disturbance term is assumed to be
additive Gaussian after the log-transformations, with
mean zero and standard deviation equal to the RMSE
of the regression.

5.3. Carbon production= f(algal density)

To predict primary productivity from algal density,
we used a generalised version of the model proposed
by Cole and Cloern (1987)and subsequently modified
for the Neuse byMallin et al. (1991)and, later, by
Boyer et al. (1993). The model, which expresses daily
algal carbon productivity as a function of biomass,
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photic depth, surface irradiance, and water temper-
ature was fit to approximately 5 years (mid-1994
through 1999) of biweekly monitoring data at 11
mid-channel sampling locations within the Neuse
River estuary (Borsuk et al., 2003). Photic depth and
surface irradiance were found to not be significant
terms in the model, perhaps because of the variable
irradiance method employed in the determination
of productivity (Mallin and Paerl, 1992). Consistent
with the results ofBoyer et al. (1993), the model re-
lationship was found to be significantly different for
the oligohaline zone than for the mesohaline zone.
Overall the model resolved 73% of the variability in
log-transformed productivity, based on theR2 value.

The Bayesian network for productivity is similar to
that forPfiesteriawith an added dependence on water
temperature (Fig. 2c). Again, because of the linear
model construction, the parameter uncertainty can be
described by a multivariate normal distribution with
mean vector and covariance matrix estimated by the
regression results.

5.4. Sediment oxygen demand= f(algal carbon
production)

While abundant water quality monitoring data exist
for the Neuse, the historical values of algal carbon
production do not span the range that may be expected
under a significant anthropogenic change in nutrient
inputs. Therefore, we relied on cross-system data
from 34 estuaries and coastal zones to parameterise a
simple, mechanistic model relating carbon production
and sediment oxygen demand, including the effects
of water column decay and sediment burial (Borsuk
et al., 2001b). To do this, we employed a hierarchical
approach which assumes partial, but not complete,
commonality in parameter values across different
estuarine systems. Both global and system-specific
parameters were estimated using Bayes Theorem with
non-informative priors.

Using the parameters estimated for the Neuse estu-
ary, annual average sediment oxygen demand can be
expressed as a probabilistic function of annual aver-
age carbon production and water depth (Fig. 2d). Av-
erage water depth in the middle portion of the Neuse
estuary is 2.53 m (Boyer et al., 1993) and annual aver-
age algal production can be calculated from the daily
predictions of the productivity model described above,

after the appropriate unit conversions and assuming
constant, homogeneous photosynthetic rates through-
out the water column (consistent with the intent of the
variable light measurement method employed) for 9 h
per day (Paerl et al., 1998). This annual aggregation
eliminates much of the uncertainty associated with the
daily predictions and is more consistent with the uses
suggested for the model byBoyer et al. (1993). Uncer-
tainty in parameter values and the disturbance term are
described by the Bayesian posterior distributions esti-
mated by the hierarchical model (Borsuk et al., 2001b).

5.5. Bottom water oxygen concentration= f
(sediment oxygen demand)

A process-based model of oxygen depletion was
specified that is consistent with established theory
yet is simple enough to be empirically parameterised
from available monitoring data (Borsuk et al., 2001c).
The model represents the processes of microbial
oxygen consumption and physical reoxygenation,
including the effects of temperature and vertical strat-
ification. Non-linear regression allowed for the direct
estimation of rate constants from field data. The re-
sulting model describes 79% of the variation in daily
dissolved oxygen concentration and can be used to
probabilistically predict the frequency of bottom wa-
ter hypoxia, conditional on the annual average rate
of benthic oxygen demand predicted by the model
described in the previous section (Fig. 2e). Parameter
uncertainty is similarly described by a multivariate
distribution estimated from the regression procedure,
and the disturbance term is assumed to be additive
Gaussian with mean zero and standard deviation equal
to the RMSE of the regression.

5.6. Shellfish survival= f(bottom water oxygen
concentration)

To relate oxygen status to shellfish abundance in the
Neuse River estuary, we developed a survival model
for the clam speciesMacoma balthica(Borsuk et al.,
2002a). Survival modelling characterises the probabil-
ity of death as it relates to the value of a stressor and
exposure time. The survival rate ofM. balthica was
chosen as an indicator for shellfish abundance because
M. balthicaplays a critical role in the Neuse ecosys-
tem. This later-succession bivalve is the major com-



M.E. Borsuk et al. / Ecological Modelling 173 (2004) 219–239 229

ponent of benthic biomass in the estuary as well as a
valuable food resource for demersal fish species, such
as spot, croaker, and flounder. Blue crabs also prey
upon this species because of its thin shell (Skilleter
and Peterson, 1994).

Field studies have shown that the late-summer pat-
tern of abundance ofM. balthica in the Neuse closely
matches the pattern of extended exposure to summer-
time hypoxia (Powers et al., submitted for publica-
tion). However, experimental studies have not yet been
performed to directly address the sensitivity of this
species to low oxygen conditions. Therefore, this sub-
model relied upon the expert judgement of two marine
biologists (S.P. Powers and C.H. Peterson, Institute of
Marine Sciences, Morehead City, NC) to provide the
data used in model building. Well-developed meth-
ods exist for eliciting expert judgements (Morgan and
Henrion, 1990; Meyer and Booker, 1991), and the ma-
rine science literature and the experts’ own experience
form a solid foundation for accurate assessment. The
elicitation method that we used was based on a series
of questions to establish points on the cumulative dis-
tribution function of times-to-death for multiple dis-
solved oxygen concentrations. Model parameters were
then estimated from the assessed data using Bayes’
Theorem. The resulting model probabilistically relates
survival of M. balthica to time of exposure (duration
of stratification) and dissolved oxygen concentration,
as required for the network model (Fig. 2f).

5.7. Fish population health= f(bottom water oxygen
concentration)

One approach to predicting the population con-
sequences of sublethal oxygen effects has been to
develop individual-based models (Huston et al., 1988)
linking fish to all the processes and subprocesses as-
sociated with the effects (Breitburg et al., 1999). How-
ever, information of sufficient detail to parameterise
such a model does not exist for the Neuse estuary.
Therefore, we relied upon the elicited judgement of
two experienced estuarine fisheries researchers (L.A.
Eby and L.B. Crowder, Duke University Marine Lab-
oratory, Beaufort, NC) to characterise the relationship
between fish population health and the annual extent
of bottom water hypoxia (Borsuk, 2003). Many dif-
ferent definitions of population health are possible.
Therefore, we asked the researchers to develop a def-

inition that was consistent with their knowledge and
experience. They chose to use a categorical variable,
with levels defined as,

Excellent High average growth rates (>0.6 mm per
day); low incidence of visible disease
(<1%) on all fish but menhaden;

Good Medium average growth rates (≤0.6 and
≥0.2 mm per day); low incidence of
visible disease (<1%) on all fish but
menhaden;

Poor Poor average growth rates (<0.2 mm per
day); medium/high incidence of visible
disease (≥1%) on all fish but menhaden;

where growth rate is measured in the field as described
by Eby (2001). Atlantic menhaden were specifically
excluded from measures of the incidence of visible dis-
ease because of their high susceptibility to infections
and parasites and the seasonal nature of their disease
patterns irrespective of oxygen conditions (Goldman,
2000).

With the health categories defined, questions were
next asked regarding the probability of population
health being in each of the categories, given a par-
ticular temporal extent of low oxygen. Since earlier
studies have revealed that low oxygen is only a con-
cern at high water temperatures (Borsuk et al., 2001c),
we focused attention on the summer season. A typical
question was

Given a summer in which bottom water oxygen
concentration (at depth greater than 1.5 m) in the
mid-channel of the Neuse estuary averages less than
2.0 mg/l for 10 out of 92 days in July, August, and
September, what is the probability that fish popula-
tion health at the end of the summer can be char-
acterised as “Excellent”? “Good”? “Poor”? (An-
other way to think about this would be: if you were
to observe 100 such years, in how many would
fish health be characterised as Excellent, Good, and
Poor?)

This question was repeated for multiple oxygen
concentration values and multiple numbers of days.
The scientists’ assessments were based on the re-
sults of their monthly fish trawling and water quality
sampling program in the Neuse estuary, as well as a
set of in situ caging experiments (Eby, 2001). Such
experience-based, probabilistic judgements represent
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the estimated net result of a number of interacting
processes and sources of uncertainty.

Results of the assessments (Borsuk, 2003) indicated
that a bottom water oxygen concentration of 2.0 mg/l
serves as an effective tolerance breakpoint for fish,
with the probabilities of the various levels of fish
health depending primarily on the number of days with
concentrations less than 2.0 mg/l. For convenience, we
refer to this oxygen condition as “hypoxia”. Accord-
ing to the scientists’ assessments, the health of the fish
population declines non-linearly with increasing tem-
poral extent of hypoxia. However, a number of factors
in addition to oxygen were also believed to affect fish
health. Because these other factors were not explicitly
included in the network, they are manifest as distur-
bance terms, resulting in the attribution of some like-
lihood to more than one fish health category for each
assessment.

To generalise the fish health category estimates to
numbers of hypoxic days intermediate to the values
used in the assessments, a cumulative logit regression
model was constructed (Borsuk, 2003). This model is
an extension of the familiar logistic regression model
for binary responses, to allow for responses with mul-
tiple ordered categories. This model was fit to the as-
sessment data, using an equivalent sample size esti-
mation to express assessment uncertainty. Under this
conceptualisation, all uncertainty is included in the pa-
rameter distributions and a separate disturbance term
is not included (Fig. 2g).

5.8. Fish kills= f(fish population health, bottom
water oxygen concentration)

Large fish kills in the Neuse estuary are believed
to be caused by a combination of low oxygen bottom
water and a unique set of wind conditions (Paerl et al.,
1999). In this scenario, wind blowing across the estu-
ary pushes surface water toward the downwind shore.
A compensating flow of bottom water occurs in the op-
posite direction, causing upwelling along the upwind
shore. If the upwelled bottom water is depleted in oxy-
gen, there is the potential for fish to be trapped without
an escape route. Of course, a fish kill requires the pres-
ence of fish in the area of the upwelling, concurrent
with the strong cross-channel winds and the presence
of oxygen depleted bottom water. Even with this com-
bination, fish may be able to react and swim away from

the upwelling, making predictions of the exact timing
of fish kills impossible. The interacting effects of un-
predictable natural events and anthropogenic changes
in water quality is a common source of difficulty in de-
veloping predictive models for fisheries management
(Rose, 2000) and suggests a probabilistic approach.

The probabilities of fish kills of varying magni-
tudes, conditioned on a given state of fish popula-
tion health, the occurrence of a strong cross chan-
nel wind, and varying bottom water oxygen concen-
trations, were elicited from the same estuarine fish-
eries scientists questioned for the fish health model
(Borsuk, 2003). Asking for a probability conditioned
on a number of circumstances allowed the scientists
to focus on the likelihood of a fish kill only under
certain given circumstances (upon the coincidence of
a number of causative factors), rather than having to
simultaneously consider the background frequency of
cross-channel winds, low oxygen, or a particular state
of fish health (all of which are being predicted sepa-
rately in the network). A typical question was

Given a fish population in “poor” health, a day in
which bottom water oxygen concentrations average
0.5 mg/l at mid-channel locations, and the strength
and direction of winds are such that the bottom wa-
ter is being brought to the surface along the wind-
ward shore, what is the probability of more than
100,000 fish being trapped and dying? (Another
way to think about this would be: if this event were
to happen 100 times, in how many instances would
at least 100,000 fish be killed?)

This question was repeated for multiple oxygen
concentration values and multiple numbers of fish.
The scientists’ assessments of these probabilities were
based on their knowledge of fish movement in re-
sponse to low oxygen from their monthly fish trawl-
ing program and their knowledge of sensitivity to low
oxygen from their caging experiments.

Assessment results (Borsuk, 2003) showed that fish
kills are expected to be relatively rare, even with all
the conditions being right, with conditional proba-
bilities exceeding 50% only for kills involving more
than 1000 fish and a population in poor health. These
probabilities drop substantially for kills involving
more fish in better health, with an assessed probabil-
ity of only about 1% for a kill involving 100,000 fish
in good or excellent health, even at the lowest oxy-
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gen concentrations. The scientists did not believe that
there would be a difference in susceptibility to fish
kill conditions between populations with good or ex-
cellent health status, but did believe that fish of poor
health were somewhat more susceptible. Again, a bot-
tom water oxygen concentration of 2.0 mg/l served as
an effective breakpoint, with an equal assessed chance
of a kill occurring at all concentrations below 2.0 mg/l
and a negligible chance of a low oxygen-induced kill
occurring at higher concentrations.

The assessed conditional probabilities of fish kills
of varying magnitudes can be used directly in the net-
work model. The finding that only days with an oxy-
gen concentration less than 2 mg/l have the potential
for a fish kill suggests the use of a “collector node”
to represent the scenarios of concern (Abramson
et al., 1996). A node labelled “Days with Trapping
Conditions” was added to represent the days with the
joint occurrence of strong cross-channel winds and
hypoxic bottom water. The probability of such condi-
tions is a joint probability, calculated as the product
of the distributions describing these two nodes. The
assessed fish kill probabilities are then conditioned
on the occurrence of “trapping conditions” and fish
population health status (Fig. 2h).

6. Integrated network

The full Bayesian network composed of the set of
conditional probabilistic relationships described in
the previous section was implemented in Analytica,
a commercially available software program for eval-
uating graphical probability models (Lumina, 1997).
Other, non-commercial software packages are also
available. We chose Analytica because it allows for
the use of continuous or discrete variables related by
any functional expression. Uncertainty can be repre-
sented by a wide variety of probability distributions
and is propagated through the network using Monte
Carlo or Latin Hypercube sampling. Analytica also
allows models to be graphically depicted as nested
modules so that complex networks can be represented
at different levels of detail (Fig. 2).

Although many of the functional relationships
among variables were developed to be applicable to
multiple regions of the estuary, we chose the “middle”
region (Fig. 1) as the focus of the integrated model.

This is historically the region with the greatest ex-
tent of hypoxia and the most frequent occurrence
of fish kills. It is also the section from which data
used to fit both the oxygen dynamics andPfiesteria
submodels were collected. Because the Neuse River
TMDL is to be expressed in terms of a percent nitro-
gen reduction relative to a 1991–1995 baseline (NC
DWQ, 2001b), daily data from those years served
as the basis for the marginal variables: river flow,
total nitrogen concentration, and water temperature
at Fort Barnwell, the most downstream river mon-
itoring station. These variables were represented in
the network as a multivariate empirical distribution
to maintain any underlying dependencies. Missing
values for the marginal variables were estimated from
flow models as described byBorsuk et al. (2003).
The Latin Hypercube sampling method was used to
draw 1000 samples of all model parameter and error
distributions. The dependence structure implicit in the
joint distribution of the parameters was factored into
a series of conditional distributions (represented by
arrows between parameter nodes in the subnetworks
in Fig. 2) using the Cholesky decomposition of the
parameter variance–covariance matrix (Golub and
Van Loan, 1983).

To predict the effect of a substantial reduction in
nitrogen inputs to the Neuse estuary, the marginal dis-
tribution of riverine nitrogen concentrations was mul-
tiplied by one half. All other functions and marginal
nodes in the model were left unchanged, and new dis-
tributions were computed for the ecological variables
of interest.

All results are presented as full probability distri-
butions, rather than statistical summaries, to provide
a more complete representation of predictive uncer-
tainty. Consideration of full distributions often has
important consequences for both theoretical understa-
nding and practical decision-making (Ludwig, 1996).

7. Results

The marginal distributions of policy-relevant eco-
system attributes (Fig. 3, solid curves) show the rela-
tive likelihood of alternative values under the baseline
scenario (no nitrogen reduction). The annual average
chlorophyll a concentration in the middle region of
the estuary is expected to be slightly above 20�g/l
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Fig. 3. Predictive probability distributions of policy-relevant ecosystem attributes. The baseline (no nitrogen reduction) scenario is shown
as a solid curve, and the management scenario, corresponding to a 50% reduction in total nitrogen inputs, is shown as a dashed curve or
diagonally striped bar.

(90% credible interval (CI): 18.3–26.5�g/l), and the
state chlorophyll standard of 40�g/l will most likely
be exceeded on more than 10% of the days (90% CI:
9.8–18.8%).Pfiesteria-like cell densities at levels of
concern are only expected to occur between 6 and 15

days (90% CI) during the summer season. The summer
survival rate ofMacomaclams is predicted to be low,
with a mean value of 12% and a 90% CI of 1–38%.
For comparison, during the summer of 1997, the first
year of extensive benthic surveying, theMacomaclam
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Fig. 4. Predictive probability distributions of intermediate diagnostic variables in the network. The baseline scenario is shown as a solid
curve, and the management scenario is shown as a dashed curve.

community was estimated to be reduced to less than
20% of its spring population (Peterson et al., 2000).

Under the baseline scenario, the most likely state of
fish population health is “good” with a probability of
0.55, while “excellent” has a probability of 0.32 and
“poor” of 0.13. Fish kills of any size are predicted to be
relatively infrequent events. Therefore, probabilities
are expressed as the expected number of fish kills in
a 10-year period. The model predicts between 6 and
21 kills (90% CI) in 10 years involving more than
1000 fish, between 1 and 4 involving more than 10,000
fish, and an average of between 0.2 and 0.8 involving
100,000 fish. For reference, there were 8, 5, and 2
documented fish kills of sizes >1000, >10,000, and
>100,000 fish, respectively, during the 10 years 1989
through 1999 in the middle portion of the estuary.
Additionally there were six kills in which the number
of fish involved was not reported (NC DWQ, 2001a).

While not ecosystem attributes of direct concern to
the public, the intermediate nodes representing algal
carbon production and days of summertime hypoxia
are useful diagnostic variables. Values for these vari-
ables are commonly estimated for the Neuse and other
estuaries. The Bayesian network predicts that, under
the baseline scenario, annual carbon production will be
between approximately 356 and 476 gC/m2 per year
(90% CI,Fig. 3). Measurements made during the years
1985–1988 resulted in estimates of 395, 455, 491, and
493 gC/m2 per year, respectively (Boyer et al., 1993).
Predictions of summertime hypoxia range from 10
to 34 days out of 90 (11–38% frequency). For refer-
ence, 21 out of the 66 (31%) weekly/biweekly oxygen
measurements taken during the summer in the mid-
dle estuary from 1994 to 1999 had values less than
2 mg/l. Additionally, a spatially distributed sampling

scheme conducting during the summers of 1997 and
1998 found an average of 25% of the middle portion
of the estuary to have an oxygen concentration below
2 mg/l (Eby and Crowder, 2000).

Under the scenario of a 50% reduction in nitrogen
inputs (Fig. 3, dashed curves), annual average chloro-
phyll a concentration is predicted to decrease approx-
imately 20%. However, this estimate is accompanied
by an increase in predictive uncertainty, as indicated by
a slightly wider distribution (90% CI: 14.1–23.3�g/l).
The frequency of chlorophyll standard exceedances
can be expected to decrease accordingly, with an av-
erage value slightly less than 10%. The mean number
of days with levels of concern forPfiesteriadecreases
somewhat, to between 3 and 13 days. The distribution
of Macomasurvival rates shows a non-zero mode near
10% and has a mean value of 17% (90% CI: 3–46%).
Fish health is only expected to increase very slightly
with probabilities of 0.12, 0.53, and 0.35 for Poor,
Good, and Excellent, respectively. Fish kill probabili-
ties of all sizes decrease, but not substantially.

The reason for the relatively minor response of most
ecological attributes can be discovered by looking at
the trends in carbon production and days of summer-
time hypoxia (Fig. 4). While carbon production is ex-
pected to decrease by approximately 15% in response
to reduced algal stimulation, this effect is dampened
further down the causal chain, so that the reduction in
the number of days of resulting hypoxia is only 11%.

8. Discussion

Our purpose in developing the Bayesian network
was not to create a model that more realistically rep-
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resents the actual Neuse River ecosystem, but rather
to develop a model that more realistically represents
our knowledgeabout that system. In particular, we
wanted to represent current scientific knowledge about
the linkage between nitrogen inputs and the ecosys-
tem attributes that are of interest to the public and
decision-makers. In this sense, the Bayesian network
should not be seen as a suggested replacement for
other models in current use, but rather as an integrator
of all forms of knowledge, whether expressed as a
process-based description, a data-based relationship,
or a quantification of expert judgement. To the extent
that an existing simulation model appropriately repre-
sents our level of understanding about the functioning
of the system, that model can be used as the basis for
a set of relationships in a Bayesian network. However,
because knowledge in all forms is inherently uncer-
tain, and Bayesian networks represent that uncertainty
using conditional probability distributions, the predic-
tive accuracy of the process description must be fully
quantified. While progress has been made recently
in characterising the uncertainty of complex models
(Poole and Raftery, 2000; Kennedy and O’Hagan,
2001; Reichert et al., 2002), most commonly used
aquatic ecosystem models have not undergone a rig-
orous uncertainty analysis (Reckhow, 1994c). There-
fore, when we used process models as an expression
of knowledge in the Bayesian network, they were
applied at a considerably more aggregate scale.

In developing aggregate functional relationships
among variables, it did not seem sensible to use tabu-
lated coefficient values, which are generally measured
at a fine spatial and temporal scale. Therefore, ex-
pressions describing pattern-generating mechanisms,
whether of smaller or greater scale, were quantified
using historical data or other observational evidence.
In this way, the estimated model parameter values
are directly applicable to the scale of the data used in
their derivation (Young, 1998). For example, estuarine
oxygen dynamics were described by a mathematical
expression characterising current knowledge about
the primary controlling mechanisms. This equation
related bottom water oxygen concentration to the
rate of sediment oxygen demand (itself a function
of temperature) and duration of stratification. Such a
model successfully reproduced the patterns observed
in the data, while still being identifiable from existing
monitoring data. Undoubtedly, finer scale processes

exist that influence oxygen concentration at any given
time and place, but these processes are not relevant
for reproducing the observed patterns and for linking
these patterns to management actions. Moreover, the
effects of these processes were not neglected but were
included in the probabilistic disturbance term.

Because there is no single scale at which scientists
have studied the Neuse system, there is no single scale
at which all model relationships could be developed.
Therefore, a characteristic of the Bayesian network
that we exploited is its ability to integrate submodels
of disparate scales. For example, while sufficient data
existed to characterise a model relating the distribu-
tion of daily bottom water oxygen concentrations to
sediment oxygen demand, temperature, and duration
of stratification, there was not enough site-specific in-
formation from the Neuse to predict future changes
in sediment oxygen demand in response to reductions
in carbon loading. Therefore, a model was developed
using cross-system data from a number of estuaries to
predict annual average oxygen demand from annual
average carbon loading. This annual average demand
was then assumed to represent a steady state mean,
the short-term fluctuations around which could be pre-
dicted from water temperature changes using the oxy-
gen dynamics model. Expected changes in this mean
rate of oxygen demand in response to carbon load re-
ductions were then predicted from the cross-system
model. This technique of expressing rate equations in-
volving fast variables as functions of slower variables
is referred to as “variable speed splitting” (Walters and
Korman, 1999) and may be a useful general method
for cross-scale modelling (Auger et al., 2000).

Choosing the various scales of representation in a
ecological model should be a dynamic and iterative
process (Jorgensen, 1995). This is because while the
intent is to choose scales that yield predictable pat-
terns of the natural system, it is more often the case
that scales are imposed by observational constraints
(Levin, 1992) which may evolve over time. Further,
the scale of prediction should correspond to the needs
of decision-makers, which may also change with time
as they gain understanding of the problem. Such up-
dating of the model is facilitated by the conditional
independencies identified in the causal network repre-
sentation. These independencies, implied by the lack
of a connecting arrow between two nodes, allow for
the modularization of the full model into independent
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causal structures. When the nature of one of these
sub-structures is revised, because of either a change
in knowledge or a change in environmental condi-
tions, the other structures remain unaltered (Pearl,
2000).

For some variables in our network, suitable “hard
data” did not exist for quantifying functional relation-
ships. In these cases, we relied on the formally elicited
judgement of a discipline-specific scientist. While the
use of assessed quantities for model building may
appear to be a subjective process, it must be kept
in mind that professional judgement is already im-
plicit in all scientific modelling (Korfmacher, 1998).
Whether it is involved in deciding what processes
to consider, what mathematical form appropriately
characterises those processes, what experimental re-
sults are relevant, or how to extrapolate experimental
results to the natural system, judgement is used in
every step of the modelling process. Therefore, when
directly relevant data are limited, and yet policy
needs require model construction, the use of carefully
elicited judgement is preferable to a situation in which
decision-makers are left in the difficult position of
having to extend conventional model results on their
own.

The Bayesian network approach to ecological mod-
elling is not without its shortcomings. Perhaps the
most profound is the inability to explicitly represent
system feedbacks. Bayesian networks are defined as
being directed acyclic graphs, so relationships must
represent either one-way causal influences at a par-
ticular instant in time or net influences on eventual
steady-state conditions. An alternative is to construct
a dynamic Bayesian network (Haas et al., 1994) in
which a down-arrow variable in one time step can in-
fluence an up-arrow variable in the next. Such a model
requires significantly more information to quantify the
time dynamics. However, insufficiently representing
dynamic aspects of system behaviour can lead to unex-
pected consequences that are not adequately captured
by the probabilistic predictions (Jorgensen, 1999;
Jorgensen et al., 2002).

Indeed, Bayesian networks do not improve our abil-
ity to represent structural uncertainty in ecological
models. As with other modelling approaches, network
models are subject to uncertainty in the causal struc-
ture itself, in addition to the parameter uncertainty
and natural variation that are captured by probabil-

ity distributions (Draper, 1995). This unaccounted for
source implies that the real uncertainty in model pre-
dictions will be greater than that suggested by the
model (Reichert and Omlin, 1997). Options that have
been suggested for addressing uncertainty in model
structure include Bayesian model averaging, learning
from additional data (Chatfield, 1995), and, of course,
rigorous model testing.

When possible, we have compared the predictions
of our model with data, with favourable results. This
comparison does not provide a true validation, as
much of the model was based upon the same re-
search that generated the data. However, in most
cases, the data represent the net result of multiple
processes represented by various submodels, so a
close match between predictions and observations is
not guaranteed. Of course, before placing much faith
in the model, it should be tested against new data,
preferably representing a change in conditions of the
same magnitude as the management actions being
considered.

Most goodness-of-fit statistics currently used for
model testing pertain to deterministic, or single-
valued, predictions. When predictions are expressed
probabilistically, as they are in the Bayesian net-
work, different methods for evaluation are required.
Fortunately, methods have been developed for assess-
ing probabilistic weather predictions, and these are
equally applicable to the ecological modelling do-
main. Most serve to characterise different attributes of
the joint distribution of predictions and observations
(Murphy and Winkler, 1987). Various factorisations
of this joint distribution provide different measures
of prediction quality. For example, one measure ad-
dresses the question, “How often did different observa-
tions occur when a particular probabilistic prediction
was given?” thus indicating the probabilistic accuracy
of predictions. Another calculates how often different
values of the probabilistic prediction were used, in or-
der to assess the usefulness of the predictions relative
to a näıve forecast, such as one that simply uses the
historical base rate of occurrence (Winkler and Poses,
1993). As data are collected under the presumably
changed conditions of the Neuse estuary in the future,
these methods can be used to evaluate the success of
the predictions generated by the Bayesian network
model. Such an ongoing evaluation process can serve
as the basis for model revisions.
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9. Conclusions

The Bayesian network approach does not solve all
problems associated with predictive ecological mod-
elling. Nevertheless, it encourages the modeller to take
what we believe to be a useful perspective. That is,
the realisation that ecosystem data are often abundant,
but not at the spatial and temporal scale required by
highly detailed simulation models. Scientific under-
standing of mechanism is advanced, but only to the
point of being able to identify the existence of ag-
gregate causal relationships, not to quantify all of the
small-scale dynamics. Physical, chemical, and bio-
logical processes are complex and stochastic, making
representation by probability distributions appropriate.
Bayesian networks provide a methodology for com-
bining expert knowledge of causal structure and aggre-
gate ecosystem response with condensed models that
are identifiable from available data. The probabilis-
tic predictions give stakeholders and decision-makers
a realistic appraisal of the chances of achieving de-
sired outcomes—information critical to the decision
process.

There are currently multiple estuarine response
models being used to inform the near-term selection
of a TMDL for the Neuse River estuary (Stow et al.,
2003). However, the Bayesian network is the first
to quantitatively predict changes in policy-relevant
ecosystem attributes. Our results show that ecolog-
ical improvement is likely to result from nitrogen
reductions, but the predictive uncertainty arising from
natural variation and lack of knowledge is high. The
magnitude of the combined sources of uncertainty
depends on the nature of the variable being predicted.
We found that, in general, the less observable, less
frequent, and further down the causal chain a variable
was, the greater the predictive uncertainty. However,
this type of variable is precisely the one of most
interest to stakeholders (e.g. fish kills, shellfish sur-
vival). This observation suggests that a compromise
is necessary between achieving policy relevance and
predictive precision. Selecting the appropriate degree
of compromise is a task that can best be performed
by decision-makers.

Another task arguably better addressed by public
officials than by scientists is the choice of target values
for the predicted ecosystem attributes. The selection
of specific targets determines the degree of pollution

reduction required, and thus the extent of manage-
ment costs incurred. Scientific predictions only pro-
vide estimates of ecosystem response, which then re-
quire societal value judgements concerning costs and
benefits in order to reach a rational decision. This fact
was recognised only recently in the Neuse TMDL pro-
cess by public officials and stakeholders who had the
initial expectation that somehow scientists would re-
solve all policy decisions by building accurate mod-
els. However, a combination of scientific models and
social values is required, and the literature on environ-
mental standard setting (Barnett and O’Hagan, 1997),
multi-attribute decision theory (Keeney and Raiffa,
1976) and adaptive ecosystem management (Walters,
1986) can provide helpful guidance for this process.
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