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Abstract

We present several analytical and semi-analytical solutions to evaluate the fluid residence times within the recirculation zone

created by an extraction–injection well pair for several types of flow fields. The flow fields include: a well doublet in the

absence of regional flow; an ‘encaged recirculation cell’ where a well doublet is located within and parallel to a uniform

regional flow; and a well doublet with arbitrarily oriented uniform regional flow. For a well doublet in the absence of regional

flow, we present an analytical solution for all streamlines. For the encaged recirculation cell, the first breakthrough time is

solved analytically. We also develop a semi-analytical scheme to evaluate the residence time for any ratio of recirculated flow

in a well doublet with arbitrarily oriented uniform regional flow. Both streamlines and travel times in the recirculation zone are

strictly symmetric with respect to the midpoint between the two wells. We determine the starting points of streamlines at the

well screen for a specific cumulative discharge by an analytical method. Using these starting points in a particle-tracking

scheme, one is led directly to the cumulative breakthrough curve at the extraction well. Furthermore, we provide a convenient

semi-analytical solution for the average residence time in the recirculation zone. The presented schemes minimize the number

of particles that need to be tracked in the construction of breakthrough curves and help to efficiently design recirculation

schemes for remediation purposes and to analyze tracer test data obtained in such systems.
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1. Introduction

Recirculation zones created by extraction–injec-

tion well pairs have been successfully used as in situ

reactors to remediate contaminated groundwater

(McCarty et al., 1998; Hyndman et al., 2000; Gandhi

et al., 2002). These systems are effective in the

mixing of dissolved compounds and the delivery of

substrates. The fluid residence time within the reactor,

i.e. the time to travel from the injection to the

extraction well, is variable and, thus, the degree of

treatment is generally variable. However, by increas-

ing the number of times the flow circulates through

the reactor, the total treatment time is increased and

the variability is reduced through mixing within the

wells (McCarty et al., 1998). Extraction–injection

well pairs are also used in forced-gradient tracer tests

to determine the hydraulic parameters (Grove and

Beetem, 1971; Welty and Gelhar, 1994).
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In designing a recirculation zone, we need to

consider its volume and residence time, and the rates

of exchange between the reactor and the rest of the

formation, i.e. the rate of inflow of contaminated

water and the rate of outflow of treated water. Volume

determination is related to the delineation of bounding

streamlines, similar to capture zone delineation

(Gorelick et al., 1993; Bakker and Strack, 1996;

Shan, 1999; Christ and Goltz, 2002; Fienen et al.,

submitted). The recirculation ratio, i.e., the proportion

of flow within the recirculation zone to the well flow

rate, in homogeneous, isotropic aquifers can be

derived analytically based on complex potential

theory (Bear, 1979; Strack, 1989). Generally, two

methods are used to evaluate the fluid residence time

in the recirculation zone. The average residence time

can be directly derived provided that the volume and

the recirculation flow rate are known. The other

commonly used method is streamline tracing: numer-

ous particles are released at the injection-well

boundary and move with the local seepage velocity

until they reach the extraction well. The ensemble of

all particle travel times yields the breakthrough curve

at the extraction well (Zheng and Bennett, 2002).

Muskat (1937) determined the shape and position

of a tracer front for a well-doublet flow field in the

absence of regional flow and the first breakthrough

time for the injected water reaching the extraction

well. Bear (1979) studied the shape of the advancing

front separating the indigenous water of a confined

aquifer from a body of water injected into it by

following the movement of water particles along

streamlines. Zhan (1999a) defined a streamline

constant, and derived closed-form steady-state ana-

lytical solutions for capture times for extraction–

injection and extraction – extraction double-well

systems in the absence of regional flow. Analytical

and semi-analytical solutions of horizontal well

capture times have also been studied by the same

author (Zhan, 1999b; Zhan and Cao, 2000). In this

paper, we derive an analytical solution using stream-

functions to determine the fluid residence times of a

well doublet flow field in the absence of regional flow

by taking advantage of the circular shape of

streamlines. A semi-analytical scheme is also pre-

sented to evaluate the residence times for a well

doublet flow field with arbitrarily oriented uniform

regional flow.

2. Conceptual model

Consider a confined homogeneous and isotropic

aquifer with uniform thickness b: Fig. 1 is a plan

view of the flow field created by an extraction–

injection well system with uniform regional flow

(after McCarty et al., 1998). This system includes

an extraction well, located at zEðd; 0Þ; and an

injection well, located at zIð2d; 0Þ: The wells are

located such that the midpoint between them is the

origin of the coordinate system. The uniform

regional flow is oriented at angle a from the

positive x-axis. Water is pumped from the extrac-

tion well at a pumping rate Qw and reinjected into

the injection well at the same rate. Generally, the

system has two stagnation points and the flow field

can be divided into three zones of primary interest

by the bounding streamlines passing through the

stagnation points. Zone I is the capture zone, Zone

II is the recirculation zone, and Zone III is the

release zone. Outside of the bounding streamlines

is regional flow not passing through any of the

considered wells. We are interested in the recircu-

lation zone only. However, under certain conditions

Fig. 1. Plan view of the flow field created by an extraction–injection

well pair with uniform regional flow in a dimensionless domain.

Solid lines are streamlines, dashed lines are hydraulic equipotential

lines, and dark solid lines are separation streamlines.
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one may observe that no streamline emerging from

the injection well reaches the extraction well, i.e.

no injected flow will ever reach the extraction well

(Dacosta and Bennett, 1960; Bear, 1979; Erdmann,

2000).

3. Mathematical derivation

3.1. Complex functions

Complex potential theory is a convenient

method for calculating two-dimensional groundwater

flow in a homogeneous, isotropic medium

assuming the Dupuit-Forcheimmer conditions. The

notation and development presented follows Strack

(1989).

VðzÞ ¼
Qw

2p
ln

z 2 zE

z 2 zI

� �
2 �Q0z ð1Þ

VðzÞ ¼ FðzÞ þ iCðzÞ; z ¼ x þ iy;

�Q0 ¼ Qx0 2 iQy0

ð2Þ

where V is the complex potential, F is the discharge

potential, C is the streamfunction, Q0 is the uniform

discharge attributed to regional flow, �Q0 indicates

complex conjugate of Q0: Qx0 and Qy0 are the

components of regional flow rate in the x and y

directions, respectively.

The complex discharge function is defined as

WðzÞ ¼2
dV

dz
¼

21

2p

Qw

z2 zE

þ
1

2p

Qw

z2 zI

þ �Q0 ð3Þ

W ¼Qx 2 iQy ð4Þ

and the seepage velocity can be calculated by

v¼ vx þ ivy ¼
Qx

nb
þ i

Qy

nb
¼

�W

nb
ð5Þ

where b is the aquifer thickness and n is the effective

porosity.

The discharge potential and streamfunction in the

Cartesian coordinates are

F ¼
Qw

4p
ln

ðx 2 dÞ2 þ y2

ðx þ dÞ2 þ y2

" #
2 ðxQx0 þ yQy0Þ ð6Þ

C ¼
Qw

2p
ðu1 2 u2Þ2 ðyQx0 2 xQy0Þ ð7Þ

where

u1 ¼ arctan
y

x 2 d

� �
; u1 [ ½2p;p� ð8Þ

u2 ¼ arctan
y

x þ d

� �
; u2 [ ½2p;p� ð9Þ

The locations of the stagnation points can be

calculated by solving a polynomial equation obtained

by setting the discharge function W ¼ 0:

zs ¼ ^d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

Qw

p �Q0d

s
ð10Þ

where zs indicates the location of stagnation point

and d is the spatial distance of each well from the

origin.

We introduce the following dimensionless vari-

ables. First, dimensionless spatial coordinates:

xd ¼
x

d
; yd ¼

y

d
; zd ¼

z

d
¼ xd þ iyd ð11Þ

a dimensionless pumping rate l :

l ¼
Qw

2plQ0ld
ð12Þ

The dimensionless discharge potentials and stream-

function are:

Fd ¼
F

lQ0ld

¼
l

2
ln

ðxd 2 1Þ2 þ y2
d

ðxd þ 1Þ2 þ y2
d

" #
2 ðxd cos aþ yd sin aÞ

ð13Þ

Cd ¼
C

lQ0ld

¼ lðu1 2 u2Þ2 ðyd cos a2 xd sin aÞ ð14Þ

Finally, the dimensionless complex potential and

discharge functions are:

Vd ¼
V

lQ0ld
¼ Fd þ iCd

¼ l ln
zd 2 1

zd þ 1

� �
2 zd e2ia ð15Þ
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Wd ¼ 2
›Vd

›zd

¼
22l

z2
d 2 1

þ e2ia ð16Þ

The dimensionless position of the stagnation points

are given as:

zsd ¼ ^
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2l eia

p
ð17Þ

Due to the discontinuity of the angle along the negative

x-axis, the streamfunction of this system has a branch

cut between the extraction and injection wells. A

continuous streamfunction would require a flow field

without internal volumetric sources or sinks.

According to the selected coordinate system, we

can verify that:

† The discharge potential and streamfunction are odd

functions with respect to the origin.

FðzÞ ¼ 2Fð2zÞ ð18Þ

CðzÞ ¼ 2Cð2zÞ ð19Þ

Notice that the streamfunction remains an odd

function despite the branch cut. Furthermore,

Eq. (10) shows the two stagnation points, zs1

and zs2 are symmetric with respect to the origin.

Thus, we have

Fðzs1Þ ¼ 2Fðzs2Þ ð20Þ

Cðzs1Þ ¼ 2Cðzs2Þ ð21Þ

† The discharge and velocity functions are even

functions with respect to the origin.

WðzÞ ¼ Wð2zÞ ð22Þ

vðzÞ ¼ vð2zÞ ð23Þ

† The recirculation zone has a symmetric shape with

respect to the origin.

3.2. A well doublet in the absence of regional flow

Fig. 2 shows a doublet flownet in the vicinity of

an extraction–injection well pair. The solid lines

are streamlines and the dashed lines are equipoten-

tial lines. Notice that the flownet is a symmetric

system, and equipotential lines and streamlines are

circular.

The circle functions of equipotential lines are

given by (Strack, 1989)

x þ d coth
2pF

Qw

� �� 	2

þy2

¼
d2

sinh2
2pF

Qw

� � ; if F – 0 ð24Þ

x ¼ 0; if F ¼ 0 ð25Þ

and the circle functions of streamlines are given by

(Strack, 1989)

x2 þ y 2 d cot
2pC

Qw

� �� 	2

¼
d2

sin2
2pC

Qw

� �

if C – 0;^
Qw

2
ð26Þ

y ¼ 0; x . d; x , 2d; if C ¼ 0 ð27Þ

y ¼ 0; d . x . 2d; if C ¼ ^
Qw

2
ð28Þ

Fig. 3 shows a streamline circle, which includes two

streamlines starting from the injection well and

ending at the extraction well. The difference of their

streamfunction values is Qw=2: Table 1 lists the circle

center, radius, length, height and central angle of

Fig. 2. A doublet flownet in the absence of regional flow.
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the streamlines. Because flow moves along stream-

lines, it is more convenient to transform the Cartesian

coordinates to polar coordinates with the origin

located at the center of a given streamline circle.

x ¼ xc þ rs cosðbÞ ð29Þ

y ¼ yc þ rs sinðbÞ ð30Þ

where xc and yc are the Cartesian coordinates of the

streamline circle center, rs is the streamline circle

radius, and b is the polar angle, b [ ½0; 2p�:

Zhan (1999a) also transformed the Cartesian

coordinates to polar coordinates, but with the polar

origin located at (0, 0). Thus, the radius changes as a

particle moves. Its velocity, in turn, must be evaluated

both in radial and angular directions. In our coordinate

system, rs is constant along streamlines and we need

to evaluate only the velocity component along the

streamline, simplifying the calculation of velocities

and travel times. Thus, the travel time can be

expressed as

t ¼
ðz2

z1

ds

lvl
¼

ðb2

b1

rsldbl
lvl

ð31Þ

where s is the length along the streamline, lvl is the

magnitude of seepage velocity.

Due to symmetry, it suffices to focus on the

streamlines in the range of positive y values. As

outlined in Appendix A1, the seepage velocity can be

expressed as

lvl ¼
Qwd

2pnbrs

1

rs sinðbÞ þ yc

¼
Qwd

2pnbrsy
ð32Þ

The velocity magnitude is only a function of the

y-coordinate for a selected streamline. The travel time

from ðx1; y1Þ to ðx2; y2Þ along a streamline is given by

t ¼
ðb2

b1

rsldbl
lvl

¼
2pnbr2

s

Qwd
½yclDblþ ðx2 2 x1Þ� ð33Þ

where Db is the streamline arc angle corresponding to

the segment between ðx1; y1Þ and ðx2; y2Þ:

On the other hand, provided with an initial point

and a travel time, Eq. (33) can be transformed to an

implicit equation to calculate the ending point. Thus,

if the starting point is the injection well, Eq. (33) can

determine the shape and position of a tracer front,

which is the solution provided in Muskat (1937); if the

ending point is the extraction well, Eq. (33) can

calculate the capture time for any starting point, which

is the solution provided in Zhan (1999a). Eq. (33) is

simpler and more versatile.

Substituting the values listed in Table 1, the

arrival/breakthrough time, from the injection well to

Fig. 3. Circular streamline and its properties.

Table 1

Properties of a streamline circle for a well doublet without regional

flow

Streamline property Value

Center ðxc; ycÞ ¼ 0; d cot
2pC

Qw

� �� �

Radius rs ¼
d

sin
2pC

Qw

� �����
����

Central angle v ¼ 2p2 4p
lCl
Qw

Length of streamline Ls ¼ rsv ¼
vd

sin
2pC

Qw

� �����
����

Height of streamline arsc hs ¼ d tan
v

4

� �
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the extraction well, can be derived as

t ¼
2pnbðycvþ 2dÞr2

s

Qwd
¼

4pnb

sin2
2plCl

Qw

� �

� 1 þ p 1 2 2
lCl
Qw

� �
cot 2p

lCl
Qw

� �� 	
d2

Qw

ð34Þ

which in dimensionless form is

t ¼
t

T
¼

1 þ pð1 2 2lCdlÞcotð2plCdlÞ
sin2ð2plCdlÞ

ð35Þ

where T is a characteristic time of the well system

defined by

T ¼
4pnbd2

Qw

ð36Þ

and Cd is the dimensionless streamfunction

Cd ¼
C

Qw

ð37Þ

The first breakthrough t0 is obtained at the shortest

streamline connecting the injection well to the

extraction well, having the streamfunction value

lCl ¼ Qw=2 (see Appendix A2).

t0 ¼
4pnb

3

d2

Qw

ð38Þ

The dimensionless first breakthrough time is t0 ¼ 1=3;

which can also be derived from Eq. (35) when lCdl
approaches to 1/2 (see Appendix A2). The median

dimensionless breakthrough time, when half the

flow reaches the extraction well, is t50 ¼ 1 given by

lCl ¼ Qw=4:

Fig. 4 shows the dimensionless arrival time versus

the dimensionless streamfunction. t decreases with

the increase of the absolute value of Cd: When Cd

approaches to zero, flow leaves the injection well

along the negative x direction and takes a theoretically

infinite time to reach the extraction well. Fig. 5 shows

the cumulative breakthrough curve at the extraction

well, which is directly derived from Fig. 4 and

Eq. (35). Notice that Eq. (35) shows dimensionless

arrival times are only related to dimensionless

streamfunction, not l: Thus, for a streamline with a

given dimensionless streamfunction its dimensionless

arrival time is constant for any Qw and d; but

the dimensional arrival time is proportional to d2=Qw

for a given n and b:

3.3. A well doublet with arbitrary uniform

regional flow

Including uniform regional flow to the well-

doublet flow field, the shape of streamlines becomes

less regular (Fig. 1), and the velocity function cannot

be transformed to a formula as simple as Eq. (32).

Generally, simple analytical solutions can be derived

only under specific conditions. We assume the well

radius is rw; and choose two particles symmetrically

Fig. 4. Dimensionless arrival time versus dimensionless stream-

function for the well doublet system without regional flow.

Fig. 5. Cumulative breakthrough curve at the extraction well in a

well doublet in the absence of regional flow.
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located with respect to the origin. One particle is

located at the injection-well screen, z0
1; and the other

particle is located at the extraction well screen, z0
2:

Due to symmetry, we have:

z0
1 ¼ 2z0

2 ð39Þ

where the subscript represents the particle number and

the superscript represents the tracing step.

Thus:

Cðz0
1Þ ¼ 2Cðz0

2Þ; vxðz
0
1Þ ¼ vxðz

0
2Þ;

vyðz
0
1Þ ¼ vyðz

0
2Þ

ð40Þ

The streamline starting from z0
1 leaves the injection

well and moves to the extraction well or leaves the

system with the regional flow. We use a forward-

tracking scheme for z0
1 and a backward-tracking

scheme for z0
2 to trace streamlines.

z1
1 ¼ z0

1 þ
ðDt

0
v1 dt; zi

1 ¼ zi21
1 þ

ðDt

0
v1 dt ð41Þ

z1
2 ¼ z0

2 2
ðDt

0
v2 dt; zi

2 ¼ zi21
2 2

ðDt

0
v2 dt ð42Þ

where zi
1 and zi

2 are the particle locations on

streamlines 1 and 2 after the ith tracing step,

respectively, and v1 and v2 are the corresponding

local seepage velocities.

According to the relations between z0
1 and z0

2; we

have:

z1
2 ¼ 2z0

1 2
ðDt

0
v1 dt ¼ 2z1

1 ð43Þ

and

zi
2 ¼ 2zi21

1 2
ðDt

0
v1 dt ¼ 2zi

1 ð44Þ

Thus, we can reach two conclusions: (1) streamlines 1

and 2 are symmetric with respect to the origin; (2)

streamlines 1 and 2 have the same travel times.

Consider a streamtube with two symmetric bound-

ing streamlines in the recirculation zone. The flow

discharge within this streamtube equals the difference

in value of streamfunctions on these streamlines. On

the other hand, streamfunction within this streamtube

is discontinuous due to the branch cut between the two

wells. Since the streamfunction jumps by an amount

of Qw across the cut, the discharge inside this

streamtube is

DQd ¼ 2pl2 lCdðz
0
1Þ2Cdðz

0
2Þl

¼ 2pl2 2lCdðz
0
1Þl ð45Þ

The first breakthrough is given under the condition

DQd ¼ 0 ð46Þ

Thus, we have

lCdðz
0
1Þl ¼ pl ¼ lCdðz ¼ 0Þl ð47Þ

Generally, the streamline with the first breakthrough

time is assumed to be a straight line connecting the

two wells. However, this assumption is valid only

when there is no regional flow or the regional-flow

direction is parallel to the two wells. In general, the

streamline with the first breakthrough is not a straight

line connecting the two wells (see Fig. 6). In fact, the

straight segment connecting the two wells is not even

a streamline when the regional flow is not parallel to

the well placement. However, Eq. (47) shows that the

streamline with the first breakthrough time always

passes through the midpoint between the two wells.

For this streamline, the forward tracking from the

injection-well screen to the extraction-well screen is

identical to the backward tracking starting from the

symmetric point at the extraction-well screen. Based

Fig. 6. Symmetric streamlines and travel times. The streamline with

the first breakthrough time passes through the origin.
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on this analysis, we can easily approximate the first

breakthrough: insert a particle at the origin and track it

to the extraction well. The time for the particle to

reach the extraction well is one-half of the first

breakthrough time.

If the starting points have the same streamfunctions

as the stagnation points, the streamtube between these

two streamlines comprises the recirculation zone.

Thus, the total flow rate in the recirculation zone in an

extraction–injection well system is given by:

Qr ¼ Qw 2 2lCsl ð48Þ

Qrd ¼
Qr

lQ0ld
¼ 2pl2 2lCsdl ð49Þ

where Qr and Qrd are the discharge in the recirculation

zone and its dimensionless formula, respectively; Cs

is the streamfunction of a stagnation point; and Csd ¼

ðCsÞ=lQ0dl; is the dimensionless streamfunction at the

stagnation point.

The total recirculation ratio in the recirculation

zone is given by

Pr ¼
Qr

Qw

¼ 1 2
lCsdl
pl

ð50Þ

If Pr ¼ 0; i.e. lCsdl ¼ pl; a minimum l can be

obtained by solving this implicit equation. This is the

critical condition to have recirculation in the extrac-

tion–injection well system; that is, when l is greater

than its ‘critical’ value, there is flow between the

injection and extraction wells. In this paper, we

assume this critical condition is satisfied, i.e. there is a

recirculation zone between the injection and extrac-

tion wells.

Travel times increase with the cumulative capture

ratio, P; so travel times of the streamlines between the

streamline with the first breakthrough and the stream-

line through a stagnation point are monotonic, i.e. the

closer to the origin, the smaller the travel time.

Eq. (45) provides us with a fast tool to find the

streamlines with a specific residence time. For

example, if we want to obtain the median residence

time in the recirculation zone, we have

P ¼
1

2
¼

DQd

Qrd

¼
2pl2 2lCdðz0Þl

2pl2 2lCsdl
ð51Þ

lCdðz0Þl ¼
pl

2
þ

lCsdl
2

ð52Þ

where z0 is the starting point located at the injection-

well screen, and can be expressed as

z0 ¼ zI þ rw eig ð53Þ

where g is the phase angle.

Thus, we may trace just this streamline to

obtain the median residence time. Generally, the

breakthrough time for a specific P; in the

recirculation zone, can be determined by selecting

the streamline with the corresponding streamfunc-

tion value:

lCdðz0Þl ¼ ð1 2 PÞplþ PlCsdl ð54Þ

Substituting Eqs. (53) and (54) into Eq. (14), g can

be obtained by solving

l tan21 sinðgÞ

cosðgÞ þ 1

� �
2 g

� 	
2 ½rd sinðgÞcosðaÞ

þ ð1 2 rd cosðgÞÞsinðaÞ�

¼ ð1 2 PÞplþ PlCsdl ð55Þ

This semi-analytical algorithm can be summarized

as follows:

1. Calculate the locations of stagnation points using

Eq. (17).

2. Calculate the values of the streamfunction at the

stagnation points using Eq. (14).

3. Calculate the values of the streamfunctions

corresponding to capture ratios using Eq. (54).

4. Locate the starting points at the injection-well

screen by solving Eqs. (53) and (55).

5. Trace streamlines to evaluate the breakthrough

times.

3.4. Average residence time

The recirculation zone may be modeled as a plug-

flow reactor. Consider an ideal plug-flow reactor (i.e.

subject only to advection) with constant empty-bed

volume V ; subject to discharge Q: The simplest case,

of course, is that of uniform specific discharge q ¼

Q=A; where A is the uniform cross-sectional area.

Then, the residence time is

t ¼
nAL

Q
¼

nV

Q
ð56Þ
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where L is the length of the reactor. However, if the

velocity within the recirculation zone is spatially

variable, the zone can be modeled as a system of

streamtubes with different residence times in each

streamtube. Consider steady-state flow in a very

narrow streamtube with discharge dQ:

ds

dt
¼

dQ

n dA
ð57Þ

or

dt ¼
n dA ds

dQ
ð58Þ

Since dQ is constant, the total time to travel distance L

in an individual streamtube is

ts ¼
n dV

dQ
ð59Þ

where dV is the streamtube volume. The residence

time weighted-averaged with the discharge over all

streamtubes is

ta ¼

Ð
ts dQÐ

dQ
¼

nV

Q
ð60Þ

Thus, the average residence time is the reactor volume

divided by the discharge. This simple relationship

applies to any reactor type. It is the residence time of

the water but also the residence time of a solute that

undergoes only advection.

The total flow rate in the recirculation zone in an

extraction–injection well system is already given by

Eq. (48). And the area of the recirculation zone can be

evaluated using Green’s theorem in the plane.

A ¼
1

2

þ
C

ð2y dx þ x dyÞ ð61Þ

A numerical approximation given by n points along

the bounding streamlines is:

A ¼
1

2

Xn

k¼1

ð2Yk dXk þ Xk dYkÞ ð62Þ

where k indicates the segment between vertices

k and k þ 1; Xk and Yk are the coordinates

of the center of segment k; and dXk ¼ xkþ1 2 xk and

dYk ¼ ykþ1 2 yk:

These points are located at the bounding stream-

lines passing through the stagnation points, and can be

obtained by tracing streamlines from the stagnation

points or by other methods for capture zone delinea-

tion (Fienen et al., submitted). Thus, the average

residence time can be evaluated by

ta ¼
nAb

Qr

ð63Þ

4. Applications

4.1. Encaged recirculation cell

Consider a scenario where the extraction well is

located downgradient from the injection well and the

uniform regional flow is parallel to the well place-

ment. The recirculation cell becomes completely

encaged and isolated from the outside regional flow

(Fig. 7). The two stagnation points are on the x-axis,

the values of their streamfunctions are zero, and are

located at

zsd ¼ ^
ffiffiffiffiffiffiffiffiffi
1 þ 2l

p
ð64Þ

Fig. 7. An ‘encaged recirculation cell’ created by an extraction–

injection well pair. The injection well is located upgradient and the

uniform regional flow is parallel to the axis connecting the wells.
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The first breakthrough time can be derived analyti-

cally (see Appendix A3).

t0 ¼
2d

v0x

2
2dvwx

v2
0x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v0x

v0x þ vwx

r

tanh21

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v0x

v0x þ vwx

r� �
ð65Þ

where

v0x ¼
Q0x

nb
¼

Q0

nb
ð66Þ

vwx ¼
Qw

pnbd
ð67Þ

The dimensionless expression is

t0 ¼
t0
Tp

¼ 1 2 2l

ffiffiffiffiffiffiffiffiffiffi
1

1 þ 2l

s
tanh21

ffiffiffiffiffiffiffiffiffiffi
1

1 þ 2l

s
ð68Þ

where

Tp ¼
2d

v0x

ð69Þ

Fig. 8 shows that t0 declines with the increase of l:

When l approaches to zero, t0 is controlled by

regional flow only. When lq 1; the regional flow can

be neglected and t0 is controlled by the wells only. In

this case, the dimensional breakthrough time

approaches to Eq. (38), as shown in Appendix A3.

To evaluate the average residence time within the

encaged cell, an explicit solution can be obtained to

specify the bounding streamlines and to calculate the

area of the recirculation zone.

x2
d ¼ 1 2 y2

d þ 2yd cot
yd

l

� �
; yd – 0 ð70Þ

Integration yields:

Ad ¼ 2pl ð71Þ

and thus in dimensional form:

A ¼ Add2 ¼
Qwd

Q0

ð72Þ

Therefore, the average residence time is

ta ¼
nAdd2b

Qw

¼
n db

Q0

ð73Þ

From Eq. (73) we see the average residence time

within the closed loop is proportional to the well

spacing and, somewhat surprisingly, does not depend

on the pumping rate. This is a direct consequence of

the fact that the cell volume is proportional to the

pumping rate. For constant regional flow, the only

way to change the average residence time is to adjust

the well spacing. Generally, two factors control the

breakthrough time of a streamline: the streamline

length and the velocity. Increasing the pumping

increases both the length of the streamlines and the

velocity. For the inner streamlines (closer to the

x-axis), such as the streamline with the first break-

through time, the effect of adjusting the pumping rates

on velocity is dominant. Therefore, increasing the

pumping rates results in a consistent decrease of

the first breakthrough times as shown in Fig. 8. For the

outer streamlines, however, the effect of elongating

the streamlines is more significant. Thus, their break-

through times behave conversely. Fig. 9 shows that

t90 consistently increases within the range of l #

1000: t90 represents the residence time in which 90%

of the recirculation flow is captured by the extraction

well. The effects of inner streamlines and outer

streamlines counteract so that the overall average

residence time remains constant.

4.2. Arbitrary regional flow

In this case, the uniform regional flow is

assumed to be 458 with the vector from the

injection well to the extraction well A conservative
Fig. 8. The dimensionless first breakthrough time versus l within

the ‘encaged recirculation cell’.
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tracer is released as a step function into the

injection well. Consider only advection. Two

methods are used to evaluate the cumulative

breakthrough curve at the extraction well. The

first one is particle tracking with 3600 particles

starting uniformly distributed at the injection-well

screen. The second one uses the scheme we

presented here to specify the starting points with

the first breakthrough time and breakthrough times

of 10,20,…,100% recirculation flow. The uniform

regional flow rate and well flow rate are 1024 and

1023 m2/s, respectively. Aquifer thickness is 10 m.

Porosity is 0.3. The well radius and spacing are

0.05 and 2 m, respectively. The total recirculation

ratio is 69.4%, which can be obtained analytically

by solving Eq. (50).

Fig. 10 compares the results obtained by these two

schemes. The accuracy of the conventional scheme

depends on the number of particles and the spatial as

well as temporal resolutions. Particles are assumed

uniformly weighted or flux weighted. The first

approach is simpler, but the second one is more

accurate. The results plotted in Fig. 10 show minor

discrepancies between the two approaches. Using the

semi-analytical scheme, we determined first the

starting locations for specified values of the cumulat-

ive capture ratio and subsequently calculated the

breakthrough times. Because we use fewer particles,

we can use a finer spatial and temporal discretization

in the evaluation of the breakthrough times so that

the results are more accurate. Especially when a

special residence time is selected as a constraint in

design, such as the median residence time, this

scheme can reduce the computational costs

significantly.

5. Summary and conclusions

First, we derived an analytical solution to calculate

the fluid residence time in the recirculation zone

created by an extraction–injection well pair in the

absence of regional flow. For a selected streamline, the

magnitude of seepage velocity is found to be a function

of only the y coordinate (the two wells located on the x-

axis). The dimensionless residence times are constants

and the dimensional residence times are proportional

to d2=Qw; where d is the half distance between the two

wells, and Qw is the pumping rate.

Second, for the encaged recirculation cell, in which

the extraction well is placed downgradient from the

injection well, an analytical solution for the first

breakthrough time was derived. The average resi-

dence time within the cell is not affected by the value

of Qw: The reason is that as Qw increases, the travel

time in the inner streamlines decreases but the size of

the cell increases and streamlines of low velocity are

created.

Fig. 9. The dimensionless breakthrough time of 90% recirculated

flow in the ‘encaged recirculation cell’ versus l:

Fig. 10. Cumulative breakthrough curve at the extraction well for

the well doublet flow field with 458 uniform regional flow.
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Finally, an efficient semi-analytical solution algor-

ithm was developed to evaluate the fluid residence time

within the recirculation zone created by a well doublet

with arbitrarily oriented uniform regional flow.

Streamlines and arrival times are strictly symmetric

with respect to the midpoint between the two wells.

Particularly, the streamline with the first breakthrough

time always passes through the midpoint between the

wells. Thus, we present a method to trace the stream-

line starting from the origin to evaluate the first

breakthrough time. The semi-analytical solution for

the well system with arbitrarily uniform regional flow

allows us to determine the starting points of stream-

lines at the injection-well screen for a specified

cumulative capture ratio which can be exploited to

calculate cumulative breakthrough curves. By mini-

mizing the number of particles to be tracked, our

solutions reduce the computational effort and provide

an efficient tool to help design remediation schemes

based on an extraction– injection well pair and

analyzing tracer tests implemented in such systems.
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Appendix A

A.1. Velocity in a well doublet in the absence

of regional flow

Based on Eqs. (3) and (5), the magnitude of

seepage velocity in the absence of regional flow can

be calculated as

lvl ¼
lW l
nb

¼
Qwd

pnb
½ðx2 2 y2 2 d2Þ2 þ 4x2y2�21=2

¼
Qwd

pnb
½ðx2 þ y2 þ d2Þ2 2 4x2d2�21=2

By replacing x and y with Eqs. (29) and (30), we have

lvl ¼
Qwd

pnb
r2

s þ d2 cot2 2pC

Qw

� ���

þ 2 drs cot
2pC

Qw

� �
sinðbÞ þ d2

�2

24r2
s d2 cos2ðbÞ

i21=2

¼
Qwd

2pnb
r2

s þ drs cot
2pC

Qw

� �
sinðbÞ

� �2
"

2 r2
s d2 cos2ðbÞ

i21=2

Let

f1 ¼
Qwd

2pnb

f2 ¼ r2
s

f3 ¼ drs cot
2pC

Qw

� �

f4 ¼ r2
s d2

Then,

lvl ¼ f1½ðf2 þ f3 sinðbÞÞ2 2 f4 cos2ðbÞ�21=2

¼ f1½f
2
2 þ 2f2f3 sinðbÞ2 f4 þ ðf 2

3 þ f4Þsin2ðbÞ�21=2

Let

g1 ¼ f 2
2 2 f4 ¼ r2

s ðr
2
s 2 d2Þ ¼ r2

s y2
c

g2 ¼ 2f2f3 ¼ 2r3
s yc

g3 ¼ f 2
3 þ f4 ¼ y2

cr2
s þ r2

s d2 ¼ r4
s

Then,

lvl ¼ f1½r
2
s ðy

2
c þ 2rsyc sinðbÞ þ r2

s sin2ðbÞÞ�21=2

¼
Qwd

2pnbrs

1

lrs sinðbÞ þ ycl
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A.2. The first breakthrough for a well doublet

in the absence of regional flow

For the direct streamline from injection well to

extraction well, we have

y ¼ 0; d . x . 2d

C ¼ ^
Qw

2

and

v ¼
Qwd

pnb

1

ðd2 2 x2Þ

Thus,

t0 ¼
ðd

2d

dx

v
¼

4pnb

3

d2

Qw

In dimensionless form, t0 ¼ 1=3; which can also be

derived from Eq. (35) when lCdl approaches to 1/2.

A.3. The first breakthrough for an encaged

recirculation cell

The streamline with the first breakthrough time is

the direct path connecting the two wells. Thus, its

velocity is parallel to the x-axis.

vx ¼
dx

dt
¼

Qw

2pnb

1

x þ d
2

1

x 2 d

� �
þ

Q0x

nb

¼
Q0x

nb
2

Qw

pnb

d

x2 2 d2

Let

v0x ¼
Q0x

nb

vwx ¼
Qw

pnbd

8>><
>>:

Then,

dt¼
dx

v0x 2
vwxd2

x2 2d2

¼
ðx2 2d2Þdx

v0xðx
2 2d2Þ2vwxd2

and

t¼
ðd

2d

ðx2 2d2Þ

v0xðx
2 2d2Þ2vwxd2

dx

¼
2d

v0x

2
2 dvwx

v2
0x

ffiffiffiffiffiffiffiffiffiffiffiffi
v0x

v0x þ vwx

r
tanh21

ffiffiffiffiffiffiffiffiffiffiffiffi
v0x

v0x þ vwx

r� �

When the uniform regional flow rate is much smaller

than the well flow rate, v0x p vwx; we have:

t<
2d

v0x

2
2dvwx

v2
0x

�

ffiffiffiffiffiffiffiffiffiffiffiffi
v0x

v0x þ vwx

r ffiffiffiffiffiffiffiffiffiffiffiffi
v0x

v0x þ vwx

r
þ

1

3

v0x

v0x þvwx

� �3=2
" #

¼
2d

v0x

2
2 dvwx

v2
0x

v0x

v0x þ vwx

þ
1

3

v0x

v0x þ vwx

� �2
" #

¼
6 dv0x þ4 dvwx

3ðv0x þ vwxÞ
2

<
4d

3vwx

¼
4pnb

3

d2

Qw

Thus, when the regional flow rate is much smaller, the

solution approaches to the one obtained in the absence

of regional flow.

t0 ¼
lCdl!1=2 1 þ pð1 2 2lCdlÞcotð2plCdlÞ

sin2ð2pCdÞ
¼

sinð2plCdlÞ þ pð1 2 2lCdlÞcotð2plCdlÞ
sin3ð2pCdÞ

<
2ð2plCdl2 pÞ þ ð2plCdl2 pÞ3=6 2 ðp2 2plCdlÞ2 ð2plCdl2 pÞ3=2

ðp2 2plCdlÞ3
¼

1

3
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