Surface-Catalyzed Transformations of Aqueous Endosulfan

S PENCER S. WALSE, K EN D. SHIMIZU, A N D J O H N L. FERRY*
Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208

We report the effect of suspended solids on the oxidation and hydrolysis of the insecticide endosulfan (α and β isomers) and its degradation products: endosulfan diol, endosulfan sulfate, endosulfan ether, and endosulfan lactone in 0.001 M NaHCO₃ buffer (pH 8.15). Suspensions of sea sand, TiO₂, α-Fe₂O₃, α-FeOOH, Laponite, and SiO₂ all catalyzed the hydrolysis of endosulfan to the less toxic endosulfan diol. Suspended creek sediment (Bread and Butter Creek SC, 4% OC) inhibited endosulfan hydrolysis. Heterogeneous and homogeneous rate constants of endosulfan hydrolysis were measured and indicate that β-endosulfan hydrolyzes faster than α-endosulfan. This observation was explained by a more stable transition state for β-endosulfan that was confirmed with ab initio molecular orbital calculations (STO-6G) on the anionic intermediates of endosulfan hydrolysis. Rates of endosulfan hydrolysis over the different surfaces corresponded to their tritium-exchange site-density and suggest a mechanism involving surface coordination prior to nucleophilic attack. The oxidation of α-endosulfan and β-endosulfan to the persistent pollutant endosulfan sulfate was not observed in this study.

Introduction
Endosulfan [6,7,8,9,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzo[ed]oxathiepin-3-oxide] (ES) is a cyclodiene insecticide that is applied as a mixture of isomers, α-endosulfan (α-ES) and β-endosulfan (β-ES), with similar insecticidal properties (1–3) but different physicochemical properties (4–11). Nonpoint source runoff of ES has been linked to fish kills (12–14) and decreased secondary productivity (15, 16) in several southeastern U.S. watersheds (12, 13, 16–25). Laboratory and field studies indicate that ES is volatile (Henry’s law constants (HLC)) at 25 °C: α-ES, 2.74 × 10⁻⁴; β-ES, 2.53 × 10⁻⁵ (4, 9), has a high affinity for soils, sediments, and biota (log Kow: α-ES, 3.6; β-ES, 3.83) (5, 32), and is readily dissipated in the water column. In the environment, the cyclic sulfite group of ES can be hydrolyzed to form a less toxic diol (ES diol) (1) or oxidized to the corresponding sulfate (ES sulfate) (16, 21, 23, 26–30). ES sulfate, α-ES, and β-ES are generally considered to be equally toxic and are all classified by the U.S. Environmental Protection Agency as priority pollutants (31). ES sulfate is less volatile than ES (32), is not readily hydrolyzed (33), and has a comparable affinity for soils, sediments, and biota (log Kow: 3.66) (32).

Studies on the fate of ES in low moisture environments such as soils (30, 34–40) and on crops (1, 26, 41, 42) indicate that the oxidative pathway dominates. Studies on the fate of ES in high moisture soils (34, 35), sterile aqueous systems (4, 5, 27, 32, 43), and nonsterile aqueous systems (4, 5, 7, 44–48) indicate that hydrolysis dominates and suggest that formation of ES sulfate is due to biological oxidation.

The ability of solids to catalyze the oxidation of aqueous micropollutants is well documented (49–56), suggesting that there could be surface-mediated thermal or photochemical reactions that contribute toward the formation ES sulfate (57). Furthermore, there are reports that surfaces affect the hydrolysis rates of not only endosulfan (44, 45) but of many other hydrolyzable esters (58–67). In this paper, we report the relative contributions of homogeneous and surface-catalyzed processes toward the thermal oxidation and hydrolysis of aqueous α-ES and β-ES.

The loss of α-ES, β-ES, ES sulfate, and ES diol, endosulfan ether (ES ether), and endosulfan lactone (ES lactone) were profiled in batch experiments conducted with or without seaward, TiO₂, α-Fe₂O₃, α-FeOOH, Laponite, SiO₂, and creek sediment suspensions in 0.001 M NaHCO₃ buffer at 28 °C, pH 8.15. The selection of these materials as potential catalytic surfaces is justified by their documented occurrence and activity in the environment (49–56, 58–70).

Experimental Section

Materials. Barnstead E-pure water (18 MΩ-cm) was used for all solutions and suspensions. Inorganic reagents were analytical grade (Fisher Scientific) unless otherwise noted. OmniSolv GC grade methyl tert-butyl ether (MTBE) was purchased from EM Science (Darmstadt, GR). The internal calibration standard, 4-bromoanisole (99+%), was used as received from Aldrich. All stock solutions were prepared in analytical grade isopropyl alcohol (Mallinckrodt) and stored at 4 °C.

Technical grade ES was obtained from Hoechst Schering AgrEvo (Frankfurt, GR). ES diol, ES sulfate, ES lactone, and ES ether standards were purchased from Riedel-de Haën (Seelze, GR). Endosulfan α-hydroxy ether (ES hydroxyether) was prepared according to the method described by Fechtinger (71).

Laponite RD, a smectite clay, was donated by Southern Clay Products, INC (Gonzales, TX). The composition of the Laponite as supplied by the producer: SiO₂, 55.6%; MgO, 25.1%; Na₂O, 3.6%; Li₂O, 0.7%; K₂O, 0.2%; TiO₂, 0.15%; Al₂O₃, 0.08%; CaO, 0.06%; Fe₂O₃, 0.04%. SiO₂, 60 Å/230–400 Mesh ASTM, was purchased from Whatman Paper Ltd. (Clifton, NJ). Goethite, α-FeOOH (99+%), was purchased from Alfa Aesar. TiO₂ (P-25, ca. 80% anatase, 20% rutile; APS 30 nm) was kindly supplied by Degussa-Hüls (Frankfurt, GR). The Laponite, α-FeOOH, TiO₂, and SiO₂ in the study were used as received. Hematite, α-Fe₂O₃, was prepared as described by Faust and co-workers (72). Transmission electron microscopy (TEM) revealed hexagonal, rhombic, and spherical particles with median diameters of 31.5 ± 18.6 nm.

Washed sea sand was obtained from Fisher Scientific and was prepared using the method of Miller and Zepp (73). Approximately 10 g of sea sand was vigorously stirred with a Pyrex stir bar in a 1 L Erlenmeyer flask containing 200 mL of water for 20 h. The resulting aqueous suspension was allowed to stand for 24 h, decanted from the settled granules, filtered with a 10–20 μm glass frit, and dried at 225 °C for 2 h. The retained material was ground into fine grains with mortar and pestle.

Creek sediment (top 1 cm) from Bread and Butter Creek, SC was donated by Dr. G. Thomas Chandler, Department of Environmental Health Science, University of South Carolina.
The sediment was 63 µm preserved, washed in deionized water, autoclaved, and reconstituted. Median grain diameter = 38–42 µm, organic carbon (OC) by C:H:N analysis = 3.8–4.1% (16). The creek sediment was dried at 85 °C for 24 h and ground into fine grains with mortar and pestle.

Specific surface areas (S, m²/g) were determined by the BET method (74) on a Coulter SA 3100 surface area analyzer. The surface areas were (triplicate measurements) as follows: TiO₂, 50.2 ± 0.3 m² g⁻¹; α-FeOOH, 84.5 ± 0.6 m² g⁻¹; α-Fe₂O₃, 46.2 ± 0.5 m² g⁻¹; SiO₂, 453.0 ± 0.4 m² g⁻¹; Laponite, 386.6 ± 0.7 m² g⁻¹; tidal creek sediment, 31.42 ± 0.8 m² g⁻¹; ground beach sand, 28.5 ± 0.5 m² g⁻¹.

Separation of α-ES and β-ES. Technical grade ES was separated into its α and β isomers via column chromatography utilizing a 2:8 acetonitrile/hexane mobile phase and a SiO₂, 60 Å/230–400 Mesh ASTM stationary phase. Isomeric identification was achieved by comparing relative thin-layer chromatographic Rf values (75) and melting points (1) of the isomeric fractions against those previously assigned to the α and β isomers. The α (mp = 108–110 °C) and β (mp = 209–213 °C) isomers were recrystallized in 2:8 acetonitrile/hexane and stored at 4 °C. The purities of the isomeric fractions were determined to be >99.99% via GC-ECD.

Experimental Procedure. Batch reactions were conducted in a modified 140-mL Pyrex hydrogenation vessel (Ace glass #7482-41) (Supporting Information, Figure 1) in the dark. Solids were suspended with vigorous stirring by a Teflon-coated stir bar in 80 mL of a 0.001 M NaHCO₃ buffer at 28 °C. Suspensions equilibrated for 180 min prior to substrate addition. pH was maintained at 8.15 by the dropwise addition of either 0.1 M HCl or 0.1 M NaOH and was monitored (Orion 410A) over the course of the experiment.

After equilibration, 10 µL of 1000 ng/µL 2-propanolic stocks of the substrate was added to the suspension to afford initial ES concentrations (ca. 3 × 10⁻⁷ M) below published water solubilities (α-ES, 9.1 ± 10⁻⁵ M; β-ES, 5.2 ± 10⁻⁴ M) (4). 2-Propanol was employed as a carrier solvent to ensure that no ES hydrolysis had occurred prior to substrate addition.

Samples (1.5 mL) were removed from the reactor through an airtight Teflon sampling port with a spring-loaded 4-mL addition. The sediment was 63 µm preserved, washed in deionized water, autoclaved, and reconstituted. Median grain diameter = 38–42 µm, organic carbon (OC) by C:H:N analysis = 3.8–4.1% (16). The creek sediment was dried at 85 °C for 24 h and ground into fine grains with mortar and pestle.

Solvent extraction of either 0.1 M HCl or 0.1 M NaOH and was monitored (Orion 410A) over the course of the experiment.

After equilibration, 10 µL of 1000 ng/µL 2-propanolic stocks of the substrate was added to the suspension to afford initial ES concentrations (ca. 3 × 10⁻⁷ M) below published water solubilities (α-ES, 9.1 ± 10⁻⁵ M; β-ES, 5.2 ± 10⁻⁴ M) (4). 2-Propanol was employed as a carrier solvent to ensure that no ES hydrolysis had occurred prior to substrate addition.

Samples (1.5 mL) were removed from the reactor through an airtight Teflon sampling port with a spring-loaded 4-mL Manostat syringe. Samples were immediately placed in Fisherbrand 20-mL amber EPA vials and processed with a Shimadzu integrator. After careful evaluation of several GC-ECD methods for ES metabolites, we found the method of Tanaka et al. (83) allowed for the quantitative detection of ES diol and ES hydroxyether without derivatization. Helium was used as a carrier gas (1.3 mL/min). Splitless injections of 1 µL were made at an injector port temperature of 200 °C, the detector temperature was maintained at 300 °C. The oven program was as follows: isothermal at 150 °C for 2 min, followed by heating from 150 °C to 290 °C at 10 °C/min, then held isothermally at 290°C for 30 min. The analytical column was a J&W DB-1 column (L = 30 m, ID = 0.53 mm, df = 1.5 µm). Method detection limits for all analytes were as follows: α-ES, 1.3 × 10⁻¹¹ M; β-ES, 7.3 × 10⁻¹² M; ES sulfate, 1.0 × 10⁻¹² M; ES diol, 7.2 × 10⁻⁴ M; ES ether, 4.3 × 10⁻¹² M; ES lactone, 2.5 × 10⁻¹² M; ES hydroxyether, 6.4 × 10⁻¹⁰ M.

Gas Chromatography—Mass Spectrometry. Qualitative analysis was achieved with a Varian 3800 gas chromatograph equipped with a Varian Saturn 2000 ion trap mass spectrometer (GC-ITMS) in electron impact (EI) ionization mode (70 eV). Full scan spectra were acquired over the ranges m/z 40–650 at 0.85 s per scan. Holox (Charlotte, NC) high purity helium was used as a carrier gas (1.4 mL/min). Splitless injections of 1 µL were made at an injector port temperature of 200 °C. The temperature program was as follows: isothermal at 90 °C for 1 min, followed by heating from 90 °C to 180 °C at 25 °C/min, then heating from 180 °C to 270 °C at 5 °C/min, and finally isothermal at 270 °C for 4 min. The analytical column was a J&W DB-5 MS column (L = 30 m, ID = 0.25 mm, df = 0.25 µm).

Treatment of Error. The standard deviation associated with triplicate injections was used to assess error in all concentration measurements. The standard error of the mean (SEM) from quadruplicate experiments was used for all kinetic and adsorption analyses.

Extraction efficiencies (quadruplicate) from fortified aqueous solutions and suspensions were measured and are reported as average values: α-ES, 97.4 ± 0.23%; β-ES, 98.5 ± 0.32% ES sulfate, 96.5 ± 0.33; ES diol, 84.2 ± 0.47% ES lactone, 96.3 ± 0.19%; ES hydroxyether, 82.4 ± 0.45%; ES ether, 97.2 ± 0.34%.

Gas partitioning and adsorption onto reactor walls (vide supra) were treated as internally consistent sources of error under illumination at 340 nm, using an Osram (HBO 103 W/2) 100 W Hg short arc lamp with a Photon Technology International (New Brunswick, NJ) A-1010B lamp housing, 2208 power supply, and a 101 grating monochromator. Slits were set at 0.6 mm with a ± 2.4 nm band-pass. The average incident light intensity (Iav = 2.4 × 10⁶ eims/min) was measured by ferrioxalate actinometry as described by Taylor (82). The light source was allowed to stabilize for at least 30 min prior to use.

Batch Adsorption Studies. Solution-solid ES adsorption studies were performed using a batch equilibrium procedure. Aqueous controls and 3.125 g/L stock suspensions of TiO₂, α-Fe₂O₃, α-FeOOH, and SiO₂ were equilibrated as described above, however, the pH was maintained at 7. After equilibration, 8 mL of the stock suspensions were added to Fisherbrand 9-mL amber EPA vials. 2-Propanolic α-ES and β-ES were then introduced to give initial ES concentrations ranging from 4 × 10⁻⁷ M to 2 × 10⁻⁹ M (n = 6). After the vials were placed on a Labquake shaker for 24 h, they were centrifuged for 1 h at 5000 rpm. Supernatant samples (1.5 mL) were removed, processed, and analyzed for ES.

Gas Chromatography—Electron Capture Detector. Quantitative analysis was accomplished with a Hewlett-Packard (Palo Alto, CA) 5890 series II gas chromatograph equipped with a 63Ni electron-capture detector (GC-ECD) utilizing nitrogen as the makeup gas (1.5 mL/min). Data were processed with a Shimadzu integrator.
TABLE 1. Product Distribution in Relative Percentages of β-ES Loss at 300 min in 3.125 g/L Aqueous Suspensions: 0.001 M NaHCO₃ Buffer, pH 8.15, 28 °C

<table>
<thead>
<tr>
<th>solid</th>
<th>% β-ES loss</th>
<th>% ES diol</th>
<th>% ES hydroxy ether</th>
<th>% ES ether</th>
<th>% α-ES</th>
<th>% ES sulfate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laponite</td>
<td>73.91 ± 2.2</td>
<td>78.53 ± 2.4</td>
<td>1.87 ± 0.06</td>
<td>0.74 ± 0.06</td>
<td>1.36 ± 0.06</td>
<td>ND</td>
</tr>
<tr>
<td>SiO₂</td>
<td>72.33 ± 3.4</td>
<td>78.97 ± 2.6</td>
<td>1.90 ± 0.10</td>
<td>0.78 ± 0.08</td>
<td>1.23 ± 0.07</td>
<td>-</td>
</tr>
<tr>
<td>sea sand</td>
<td>65.94 ± 3.4</td>
<td>79.68 ± 2.8</td>
<td>1.79 ± 0.07</td>
<td>0.71 ± 0.12</td>
<td>1.38 ± 0.08</td>
<td>-</td>
</tr>
<tr>
<td>α-Fe₂O₃</td>
<td>65.90 ± 2.6</td>
<td>81.22 ± 2.6</td>
<td>1.84 ± 0.07</td>
<td>0.84 ± 0.07</td>
<td>1.27 ± 0.06</td>
<td>-</td>
</tr>
<tr>
<td>TiO₂</td>
<td>62.78 ± 2.5</td>
<td>82.61 ± 2.0</td>
<td>1.94 ± 0.08</td>
<td>0.82 ± 0.07</td>
<td>1.34 ± 0.06</td>
<td>-</td>
</tr>
<tr>
<td>α-FeO(OH)</td>
<td>63.52 ± 3.2</td>
<td>77.87 ± 3.0</td>
<td>1.82 ± 0.09</td>
<td>0.79 ± 0.06</td>
<td>1.29 ± 0.09</td>
<td>-</td>
</tr>
<tr>
<td>homogeneous (index)</td>
<td>50.20 ± 3.5</td>
<td>79.01 ± 3.1</td>
<td>1.61 ± 0.06</td>
<td>0.55 ± 0.08</td>
<td>1.18 ± 0.07</td>
<td>-</td>
</tr>
<tr>
<td>sediment</td>
<td>11.19 ± 1.4</td>
<td>81.34 ± 2.2</td>
<td>2.05 ± 0.05</td>
<td>0.88 ± 0.04</td>
<td>1.24 ± 0.05</td>
<td>-</td>
</tr>
</tbody>
</table>

TABLE 2. Product Distribution in Relative Percentages of α-ES Loss at 300 min in 3.125 g/L Aqueous Suspensions: 0.001 M NaHCO₃ Buffer, pH 8.15, 28 °C

<table>
<thead>
<tr>
<th>solid</th>
<th>% α-ES loss</th>
<th>% ES diol</th>
<th>% ES hydroxy ether</th>
<th>% ES ether</th>
<th>% ES sulfate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laponite</td>
<td>59.31 ± 3.7</td>
<td>80.83 ± 1.5</td>
<td>1.91 ± 0.08</td>
<td>0.88 ± 0.05</td>
<td>ND</td>
</tr>
<tr>
<td>SiO₂</td>
<td>55.56 ± 2.6</td>
<td>78.95 ± 3.1</td>
<td>1.86 ± 0.10</td>
<td>0.90 ± 0.04</td>
<td>-</td>
</tr>
<tr>
<td>α-Fe₂O₃</td>
<td>54.58 ± 3.1</td>
<td>78.19 ± 2.7</td>
<td>1.89 ± 0.11</td>
<td>0.76 ± 0.07</td>
<td>-</td>
</tr>
<tr>
<td>α-FeO(OH)</td>
<td>54.54 ± 2.5</td>
<td>78.17 ± 2.5</td>
<td>1.82 ± 0.09</td>
<td>0.86 ± 0.06</td>
<td>-</td>
</tr>
<tr>
<td>TiO₂</td>
<td>52.20 ± 3.3</td>
<td>82.81 ± 2.2</td>
<td>1.85 ± 0.03</td>
<td>0.82 ± 0.09</td>
<td>-</td>
</tr>
<tr>
<td>sea sand</td>
<td>49.35 ± 2.4</td>
<td>81.42 ± 2.4</td>
<td>2.02 ± 0.12</td>
<td>0.77 ± 0.08</td>
<td>-</td>
</tr>
<tr>
<td>homogeneous (index)</td>
<td>42.40 ± 2.7</td>
<td>80.16 ± 2.5</td>
<td>1.58 ± 0.08</td>
<td>0.62 ± 0.08</td>
<td>-</td>
</tr>
<tr>
<td>sediment</td>
<td>17.44 ± 2.9</td>
<td>79.49 ± 2.0</td>
<td>2.05 ± 0.10</td>
<td>0.93 ± 0.04</td>
<td>-</td>
</tr>
</tbody>
</table>

(with respect to the experimental design) in the quantification of α-ES and β-ES loss. Even so, based on published HLCs, we estimate that less than 0.05% total ES could have volatilized into the reactor headspace.

Results and Discussion

Loss of α-ES, β-ES, ES Sulfate, ES Diol, ES Lactone, and ES Ether in Aqueous Solution. The loss of α-ES, β-ES, ES sulfate, ES diol, ES lactone, and ES ether in 0.001 M NaHCO₃ buffer at 28 °C, pH 8.15 was measured in aqueous solution for 300 min. This data was used as a comparative data set to index the effects of suspended solids against.

Over that time scale, the hydrolytic formation of ES diol accounted for approximately 80% of α-ES and β-ES loss; no oxidative to ES sulfate was detected. ES diol (80.16%), ES hydroxyether (1.58%), and ES ether (0.62%) accounted for the 42.40% loss of α-ES at t = 300 min (82.36% mass balance). The loss of β-ES (50.20%) at t = 300 min provided a similar mass balance and product distribution; however, β-ES also isomerized to generate low yields of α-ES (1.18%).

ES sulfate was stable under our conditions through 300 min. The stability of ES sulfate in our experiments is in agreement with work by Reviejo (33) who observed no hydrolysis of ES sulfate over 80 min at 20 °C, pH 9.

The formation of ES hydroxyether and ES ether accounted for 50.51% and 4.2%, respectively, of the 9.92% ES diol loss at t = 300 min (65.36% mass balance). These data strongly suggest that the formation of ES hydroxyether and ES ether proceeds only after an initial hydrolysis of ES to ES diol.

ES hydroxyether was the only identified product of ES ether in 0.001 M NaHCO₃ buffer at 28 °C, pH 8.15. At t = 300 min, ES hydroxyether accounted for only 3.42% of the 15.28% loss of ES ether.

ES hydroxyether and ES ether were detected at trace levels, combining for 0.2% of the 98.4% loss of ES lactone at t = 300 min. No attempt was made to quantify other products; however, the rapid alkaline hydrolysis of five-membered lactones to their corresponding γ-hydroxy acids is well established in bicyclo[2.2.1] systems (84, 85). Reducing the pH of the experimental solution to ~1 after the conclusion of the experiment resulted in the qualitative reappearance of ES lactone, which supports the hypothesis of endosulfan γ-hydroxy acid formation.

Loss of α-ES, β-ES, ES Sulfate, ES Diol, ES Lactone, and ES Ether in Aqueous Suspensions. The loss of α-ES, β-ES, ES sulfate, ES diol, ES lactone, and ES ether in aqueous solution was contrasted against their loss in 3.125 g/L suspensions. Figure 1 shows the loss of β-ES through time in suspensions of sea sand, TiO₂, α-Fe₂O₃, α-FeO(OH), Laponite, SiO₂, and creek sediment. Although aqueous suspensions did affect the rate of ES loss, product distributions were only slightly (~1%) affected. Table 1 (α-ES) and Table 2 (β-ES) detail the product distributions in relative percentages (as a function of ES loss) at 300 min. Figure 2 shows β-ES loss and byproduct formation in a suspension of a commonly occurring material, sea sand, and its profile is typical of ES loss in solution and 3.125 g/L suspensions (Supporting Information, Figures 9–24).

ES sulfate was stable in suspensions of TiO₂, α-FeO(OH), and creek sediment but did exhibit some hydrolysis (~1%) over SiO₂ (4.7% loss), Laponite (3.7% loss), and sea sand (2.2% loss). In aqueous suspensions, ES hydroxyether and ES ether accounted for ~50% and ~5%, respectively, of the ~16% ES diol loss at t = 300 min. Although the mechanism of ES diol loss is not understood, these data indicate that suspensions affected ES diol loss without affecting its mass balance or product distribution (relative to aqueous solution). Tidal creek
Our data suggest that the isomeric conversion from water interface (\(R\)) illustration of the chemical transformations of or suppression of ES hydrolysis. Figure 3 is a schematic suspended solids on ES loss is primarily due to the catalysis hydrolysis is known to be very slow (\(\alpha\) ES ether (+), \(\alpha\) ES (○), and mass balance (−)).

The isomerization of \(\beta\)-ES to \(\alpha\)-ES was commensurate with the overall loss of \(\beta\)-ES and is of particular interest. It has been demonstrated by Rice and co-workers (9, 10) that the conversion of \(\beta\)-ES to \(\alpha\)-ES occurs readily at the air–water interface (\(\alpha\)-ES to \(\beta\)-ES is not energetically favorable). Our data suggest that the isomeric conversion from \(\beta\)-ES to \(\alpha\)-ES also occurs at the solid–water interface.

Collectively, these results indicate that the effect of suspended solids on ES loss is primarily due to the catalysis or suppression of ES hydrolysis. Figure 3 is a schematic illustration of the chemical transformations of \(\alpha\)-ES and \(\beta\)-ES in aqueous solution and suspensions as indicated by this study.

Batch Adsorption Studies. The adsorption of ES onto solids (and reactor walls) was evaluated at pH 7, where ES hydrolysis is known to be very slow (\(t_{1/2} \alpha = 151 \text{ d, } t_{1/2} \beta = 88 \text{ d}\)) (27). In aqueous solution, we observed small losses of ES (\(<3\%\)) due to adsorption onto reactor walls. The experimental data for adsorption onto surfaces was fitted by the logarithmic Freundlich isotherm; constant relative error was assumed (86–88).

\[
\log q = \log K_F + N \log C
\]

where \(K_F\) is the Freundlich constant, \(N\) is a measure of both the relative magnitude and diversity of energies associated with a particular adsorption process (88, 90), \(q\) is the moles of adsorbate per unit surface area of sorbent (fmol m\(^{-2}\)) (87, 88), and \(C\) is the aqueous solute concentration at equilibrium (nm). A plot of \(\log q\) versus \(\log C\) has a slope of \(N\) and an intercept of \(\log K_F\) (fmol m\(^{-2}\)(nm\(^{-1}\)) (Supporting Information, Figures 37–40). Table 3 summarizes the batch adsorption data. An examination of \(\log K_F\) versus \(\log K_F\) reveals that \(\beta\)-ES is preferentially adsorbed over \(\alpha\)-ES on all surfaces studied. We have interpreted these observations to be a result of steric hindrance. A solvent-accessible surface area model (MM2) of ES confirms that access to the sulfuryl bond in \(\alpha\)-ES is limited relative to \(\beta\)-ES. It is interesting to note that \(N \approx 1\) (within a 95% confidence interval); this is consistent with other reports that used low concentrations of hydrophobic solutes and/or low sorbent loadings (91).

Kinetics. All experiments were performed in 0.001 M NaHCO\(_3\) buffer (pH 8.15) at 28 °C with [ES]\(_0\) = 3 × 10\(^{-7}\) M. Under these conditions (i.e., [OH\(^-\)] \(\approx 10[ES]_0\)) the fate of ES is dominated by specific base-catalyzed hydrolysis (1, 7, 27, 92–94) and is expressed by the differential rate equation

\[
-\frac{d[ES]_0}{dt} = k_{HOM}[ES]_0
\]

where the homogeneous rate constant of hydrolysis, \(k_{HOM}\)
FIGURE 4. Anionic intermediates of specific base-catalyzed ES hydrolysis modeled with MacSpartan ab initio MO calculations (STO-6G).

TABLE 4. Homogeneous Rate Constants (k_HOM) of α-ES and β-ES Hydrolysis in 0.001 M NaHCO₃ Buffer, pH 8.15, 28 °C

<table>
<thead>
<tr>
<th></th>
<th>k_HOM (s⁻¹)</th>
<th>t₁/₂ (days)</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-ES</td>
<td>(3.23 ± 0.07) × 10⁻⁵</td>
<td>0.24</td>
<td>0.992</td>
</tr>
<tr>
<td>β-ES</td>
<td>(4.01 ± 0.06) × 10⁻⁵</td>
<td>0.20</td>
<td>0.982</td>
</tr>
</tbody>
</table>

(k_HOM (s⁻¹), is defined as (95, 96):

\[
k_{\text{HOM}} = k_{\text{H₂O}}[\text{H₂O}] + k_{\text{H₂O}}[\text{H₂O}] + k_{\text{OH}^-}[\text{OH}^-] + k_{\text{HCO₃}^-}[\text{HCO₃}^-] = k_{\text{OH}^-}[\text{OH}^-] \tag{3}
\]

Plots of \((\ln(α-ES))/[α-ES]₀\) and \((\ln(β-ES))/[β-ES]₀\) versus time were linear, indicating ES hydrolyses displayed pseudo-first-order kinetics in aqueous solution. k_HOM (s⁻¹), was the negative of the slope obtained by a linear least-squares analysis of the data and is presented for α-ES and β-ES in Table 4.

MacSpartan ab initio MO calculations (STO-6G) were used to model the intermediates of specific base-catalyzed ES hydrolysis. α-ES and β-ES were modeled as symmetric molecules (6). Figure 4 illustrates how, during attack by a hydroxide nucleophile, the intermediate of β-ES is stabilized relative to α-ES via neighboring-group participation (97). The proximity of the carbon – carbon bond to the anion in β-ES allows for a delocalization of the negative charge as seen by calculations on the HOMO of the anionic intermediates of both α-ES and β-ES. The HOMO of β-ES shows electron density (partial negative charge) on the further carbon of the double bond, suggesting that the corresponding transition state (TSβ) will have similar stabilization due to charge delocalization. The calculated HOMO of α-ES shows no stabilization of the anion by the double bond and justifies the slower hydrolysis of α-ES relative to β-ES.

In aqueous suspensions, the contribution of solids toward surface-catalyzed ES hydrolysis was a function of surface area (S, m²/g) and loading (a, g/L) and is represented by the heterogeneous rate constant of hydrolysis, k_HET (L m⁻² s⁻¹) (58). The overall rate constant, k_OBS (s⁻¹), is expressed by the differential rate equation:

\[-d[ES]_\text{aq}/dt = k_{\text{OBS}}[ES]_\text{aq} = k_{\text{HOM}}[ES]_\text{aq} + aS k_{\text{HET}}[ES]_\text{aq} = (k_{\text{HOM}} + aS k_{\text{HET}})[ES]_\text{aq} \tag{4}\]

Plots of \((\ln(α-ES))/[α-ES]₀\) and \((\ln(β-ES))/[β-ES]₀\) versus time were linear for all experiments conducted in aqueous suspensions; k_OBS (s⁻¹) is the negative of the slope obtained by a linear least-squares analysis of the data. k_HET (L m⁻² s⁻¹) was obtained from the following expression (58):

\[k_{\text{HET}} = (k_{\text{OBS}} - k_{\text{HOM}})/aS \tag{5}\]

k_HET (L m⁻² s⁻¹) was determined for sea sand, TiO₂, α-Fe₂O₃, α-FeOOH, Laponite, and SiO₂ over a range of solid loadings (0.625 – 3.215 g/L). As the solid loading (a) of Laponite was changed the contribution of k_HET remained constant with respect toward k_OBS of α-ES and β-ES loss (Figure 5). Illustrations of this relationship for sea sand, TiO₂, α-Fe₂O₃, α-FeOOH, and SiO₂ are presented in the Supporting Information (Supporting Information, Figures 31 – 35). Table 5 lists k_HET for each solid as the grand mean ± estimated standard error based on pooling values obtained at each loading (98).
TABLE 5. Heterogeneous Rate Constants (k_{HET}) of α-ES and β-ES Hydrolysis in 0.001 M NaHCO₃ Buffer, pH 8.15, 28 °C

<table>
<thead>
<tr>
<th>Surface/S (m²/g)</th>
<th>k_{HET-β} (L·m⁻²·s⁻¹)</th>
<th>k_{HET-α} (L·m⁻²·s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laponite/386.55</td>
<td>(2.98 ± 0.54) x 10⁻⁸</td>
<td>(1.51 ± 0.26) x 10⁻⁸</td>
</tr>
<tr>
<td>SiO₂/453.16</td>
<td>(2.13 ± 0.43) x 10⁻⁸</td>
<td>(1.14 ± 0.25) x 10⁻⁸</td>
</tr>
<tr>
<td>α-Fe₂O₃/46.18</td>
<td>(1.29 ± 0.21) x 10⁻⁷</td>
<td>(8.66 ± 0.97) x 10⁻⁸</td>
</tr>
<tr>
<td>α-FeOOH/84.56</td>
<td>(8.05 ± 0.99) x 10⁻⁸</td>
<td>(5.15 ± 0.92) x 10⁻⁸</td>
</tr>
<tr>
<td>TiO₂/50.2</td>
<td>(1.04 ± 0.20) x 10⁻⁷</td>
<td>(6.73 ± 1.02) x 10⁻⁸</td>
</tr>
<tr>
<td>Sea sand/37.48</td>
<td>(1.69 ± 0.24) x 10⁻⁷</td>
<td>(9.67 ± 0.89) x 10⁻⁸</td>
</tr>
</tbody>
</table>

This work was supported by the U.S. Environmental Protection Agency Grant #R827397. We would like to extend our acknowledgment.
gratitude to Dr. G. Thomas Chandler, Department of Environmental Health Science, University of South Carolina for the use of his GC-EC and creek sediments. In addition, we would like to thank Dr. Geoff I. Scott, Center for Coastal Environmental Health and Biomolecular Research-NOAA, for thoughtful insight and discussion.

Supporting Information Available

Table of GC-ECD and GC-ITMS retention times, Rf, of endosulfan analytes and mass spectra of all analytes. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

(2) Maier-Bode Residue Rev. 1968, 22, 1–43.

(22) Schimmel, S. C.; Patterson, E. R. Agricultural runoff effects on estuarine organisms: Correlating laboratory and field toxicity testing with exotoxicological biomonitoring - An Interagency Agreement Annual Report; 1989.

