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SUMMARY
We conduct a reanalysis of data from the Utah Valley respiratory health/air pollution study of Pope and
co-workers (Pope et al., 1991) using additive mixed models. A relatively recent statistical development
(e.g. Wang, 1998; Verbyla et al., 1999; Lin and Zhang, 1999), the methods allow for smooth functional
relationships, subject-specific effects and time series error structure. All three of these are apparent in the
Utah Valley data.
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1. INTRODUCTION

Studies in which day to day changes in air pollution are compared to day to day changes in pulmonary
function in a fixed cohort of subjects have become common in the past decade. These studies usually
involve approximately 100 daily measurements on each subject over a season. Such studies control for
subject characteristics that are constant over the course of the study, as each subject serves as his or her
own control.

It is of course possible that characteristics of the subjects affect their response to air pollution. Such
interactions have received little attention to date. However, a recent report of the National Research
Council (1998), reviewing research needs for the health effects of particulate air pollution, identified
the determination of subject characteristics that affected sensitivity as a key research need. Because such
cohort studies have the potential to generate large numbers of observations, past computer limitations
have resulted in analytical strategies with minimized computational intensity, at the cost of restricting
the ability of the study to examine interactions. For example, a widely cited paper by Pope ef al. (1991)
examined peak expiratory flow (PEF) in schoolchildren. Data were collected on each of n = 41 children
for T = 109 consecutive days. For ease of computation, these data were reduced to a data set of T
observations by subtracting each child’s personal mean peak flow from each of their observations, and
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summing those deviations on each day. Such an approach ensures each person is their own control but
does not allow an assessment of heterogeneity of response or the sources of heterogeneity. Recently,
procedures for fitting mixed models, which allow the assessment of such heterogeneity, have become
available in standard statistical packages, and they have begun to be used by epidemiologists in such
studies.

In recent years, there has also been increasing attention to the role of seasonality and weather
as potential confounding influences on respiratory health. Further, these factors have highly nonlinear
influences on respiratory health. Restriction to one season does not eliminate the seasonal pattern; it
restricts it to one quarter of the annual cycle. This usually also results in a nonlinear dependence. Recent
studies of time series of counts of respiratory events and air pollution have used generalized additive
models to address the nonlinear dependence on time and temperature. Hence there is clearly a need for
mixed additive models that allow assessment of heterogeneity while addressing nonlinear relationships.
To illustrate this approach, we have reanalysed the data of Pope and co-workers.

Additive modelling of longitudinal data is a relatively recent development in the statistical literature.
Schwartz (1993) used additive models to analyse daily counts. Altman and Casella (1995) and Staniswalis
and Lee (1998) took a nonparametric approach to growth curve analysis. Other nonparametric regression
approaches to analysing longitudinal data include those based on kernel smoothers (Zeger and Diggle,
1994), smoothing splines (Anderson and Jones, 1995; Wang and Taylor, 1995; Brumback and Rice, 1998;
Wang, 1998; Lin and Zhang, 1999; Verbyla et al., 1999), local likelihood estimation (Betensky, 1997)
and penalized splines (Parise et al., 2000). The analyses in this paper build on the latter approach, which
has the advantage of being computationally simpler than most other smoothing approaches (Brumback
et al., 1999). These additive models describe complex covariate effects on each child’s peak expiratory
flow while allowing for unexplained population heterogeneity and serial correlation among repeated
measurements.

2. UTAH VALLEY STUDY

Pope et al. (1991) presented a study investigating the association between respiratory health and
respirable particulate pollution in a sample of 41 Utah Valley schoolchildren. For 109 consecutive days
beginning on or around December 1, 1990, the study recorded daily measures of PEF on each child, the
amount of particulate matter with an aerodynamic diameter less than or equal to 10 um (PM;g), and
several weather variables, such as the lowest temperature for that day.

The authors related respiratory performance to air pollution by defining

APEF; = average deviation of peak flow from each child’s average for day j,
and fitting the linear model
APEF; = o + B1(PM1g); + B2low - temp; + B3day - num; +¢;,

while correcting for serial correlation and heteroscedasticity among days in the study. Thus, this approach
estimates the effect of particulate matter averaged over the population of children. We consider models in
the next section that characterize the effects of particulate matter within each child.

3. MODELS

We reanalyse the Utah Valley data using various additive mixed models. Mixed models have a
long history in the analysis of data from longitudinal air pollution studies (e.g. Laird and Ware, 1982;
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Schwartz et al., 1990), and provide an effective mechanism for accounting for within subject correlation
(Laird and Ware, 1982). Additive models (Hastie and Tibshirani, 1990) have enjoyed more recent use in
environmental epidemiological research (Schwartz, 1994a,b), stemming from the fact that confounders
can be controlled for in a more flexible fashion.

Consider the Utah Valley setting of the previous section. Let y;; denote the measured PEF for school
childi,i =1,...,4londay j, j =1,...,109, and let x;, s;, and t; be the daily measures of PM; o, day
in season, and low temperature, respectively. A linear mixed model (Laird and Ware, 1982) for PEF is

Yij=a+ Ui+ Bxj+s;+1; +e&ij, (3.1

where U; i.i.d. N(O, ouz) and ¢;; i.i.d. N(O, oaz) with ‘i.i.d. standing for ‘independently and identically
distributed’. The fixed effect 8 represents the linear effect of PM; on PEF, after controlling for linear
effects of low temperature and seasonality. The random effects U; reflect population heterogeneity with
respect to baseline PEF unexplained by other terms in the model, and induce an exchangeable correlation
among observations measured on the same subject (Diggle et al., 1994). Such heterogeneity is common
in respiratory health studies (Schwartz et al., 1988), and is evident in the Utah Valley data with mean PEF
for the 41 subjects ranging from approximately 100 to 400 1 min~—!. In matrix notation, model (3.1) takes
the form

y=X8+Zu+e, (3.2)

wherey = (vi1, y12, .- . )T, B = (0, B, 6, )T, u= Uy, ..., U7,

1 x1 s1 ) 1 0 ... 0
U st L0 o
1 x1 s1 1 o1 ... 0
X=11 xor sr |0 ™ Z=10 1 0
1 x1 s t:1 0 0 1
1 oxr osroir 00 ... 1]

One can now fit models having form (3.2) using standard statistical software, such as SAS procedure PROC
MIXED (Littell ef al., 1996) or S-PLUS function 1me () (Pinheiro and Bates, 2000).

Model (3.1) has three inflexibilities for the purpose of analysing respiratory health data. First, the
model specifies a constant effect, 8, of air pollution across the schoolchildren population. In the current
context, this lack of subjectxPMj( interaction assumption may be violated since there are likely to be
unmeasured characteristics that affect a child’s respiratory sensitivity to inhaled particulate matter. Second,
as noted in the Introduction, recent environmental epidemiological research (e.g. Schwartz, 1994a) has
shown the effects of seasonality and weather to have highly nonlinear effects on respiratory health. Thus,
the assumption of linear temperature and day effects is likely to be overly simplistic, potentially biasing
the estimated effect of PM1 . These considerations motivate the additive mixed model

yij=a+U + B+ Vx;j+ f(s;) +gt)) + &, (3.3)
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where a, U;, B, and ¢;; are as defined above, f and g are arbitrary smooth functions, and V; i.i.d. N (0, JUZ).
The random effects V; allow for heterogeneity in the population with respect to the effect of PM; g, so that
fixed B now represents the average PMj ( effect in the population of schoolchildren. The smooth functions
f(s;) and g(t;) relax the linearity assumption for the temperature and day effects in model (3.1).

In order to fit model (3.3), consider first only the f(s;) term in the model. Let /cf ey K;{Y be a set of
distinct numbers, or knots, inside the range of the s;. The knots are usually taken to be relatively ‘dense’
among the observations in an attempt to capture the curvature in f. A reasonable allocation rule is one knot
for every 4-5 observations, up to a maximum of about 40 knots. Ruppert and Carroll (2000) described an
algorithm for choosing the number of knots, and demonstrated its effectiveness through simulation. Now
consider an analogous set of K; knots /ci, e, K%’ associated with the ¢;. Let a; = max(0, a). A linear
penalized spline model (Eilers and Marx, 1996) for (3.3) is

K K;
vij =+ Ui+ (B+Vi)xj +8sj+ Y _bi(sj — kD +ytj+ Y b(tj — k) +&ij. (3.4)
k=1 k=1

subject to the constraints
Ky K;
PCAREN:IE > Bp? < By, (3.5)
k=1 k=1

for some constants By and B>.
Brumback et al. (1999) pointed out that model (3.4), subject to constraints (3.5), is equivalent to the
mixed model

K K;
Vij =+ Ui+ B+ Vixj +8sj+ Y _bi(sj — k) +vtj+ Y _biti —x)y +eij.  (3.6)
k=1 k=1

where by i.i.d. N (0, O’sz) and b,’c i.i.d. N(O, atz). Like the linear version (3.1), we can express model (3.6)
in matrix form (3.2) with X and 3 defined as above and u and Z now defined as

U=[Ur,....Up Vi, Vi By, B B b T

and
7 = [Zy|Zvy|Zp],
where Zy and Zy are the corresponding covariate matrices for the random intercepts (U, ..., Uy)T and
random slopes (V1, ..., Vy)T, respectively, and
(1 =KD+ oo 1—kg)+ =KDy o (=K )+
Gr =KD+ o T kg )+ (r—kDs o (1 — kg )+
(1—kD+ on (1—kg)+ =KDy . (=K )+
Zb = ] s ' s ] t ' t
(st =KD+ .. (T —kg)+ (r—kpD4 ... U1 —Kkg )+t
— S S N 1 _
G1=kDe o i —kk)e =KDy (K )y
_ s _ N _ t _ t
| G =D+ oo T kg )+ (1 —kpD+ oo (7 — Kk )+ ]
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Thus, the additive mixed model (3.6) also falls within the linear mixed model framework, with the special

case 02 =02 = 0,2 = 0 corresponding to the simpler model (3.1). As a result, model fitting for this more

v s
complex model is no more difficult than for the linear mixed model.

Finally, previous respiratory health studies have shown that peak flows measured repeatedly on the
same subject are likely to be serially correlated (Neas et al., 1995). That is, it is likely that observations
taken on consecutive days are much more strongly correlated than observations taken at the beginning and
the end of the 109 day study period. This correlation may not be completely explained by the predictors,
resulting in correlation among the errors. To check for serial correlation in the Utah Valley data, we
inspected the residuals from the fit of preliminary model (3.6) assuming independent errors. A partial auto-
correlation plot of the mean residuals for each day suggested the presence of first-order serial correlation.
Thus, we fit model (3.6) under the first-order auto-regressive (AR(1)) error structure

&ij = pei j—1 +&ij,

where &;; ii.d. N(O, 052). See Diggle et al. (1994, Section 5.2) for additional examples of models
containing both random intercepts and serial correlation.

Because the mixed model framework easily handles correlated errors, adaptation of model (3.6) to
include an AR(1) error structure is also straightforward. The following section reports model fits based
on restricted maximum likelihood estimation (REML) of variance components o2, o2, o2, o> and AR(1)
parameter p, unless noted otherwise. N

Upon fitting the model, the calculation of predicted curves f and g is straightforward. One can use
fixed effect estimates 3 and 7 and the best linear unbiased predictors (BLUP)

U= (U1 ....Up Vieo, Vo, B, B B D T

of the random effects (Robinson, 1991) to calculate

K,
Flsp) =38sj+ ) bi(sj —x))+
k=1

and

Ki
gt) =yt + ZEZ(I,/ — K+
=1

Further, one can obtain variability bands for fand 2 by adding and subtracting twice the estimated
standard error of the estimated function (e.g. Bowman and Azzalini, 1997, pp. 75-76). Bias aside, these
bands can be interpreted as approximate pointwise confidence intervals (Hastie and Tibshirani, 1990).
They are also useful for detection of leverage and display of inherent variability. For additive models in
the mixed model framework, one can easily derive standard errors using standard multivariate statistical
manipulations after obtaining an estimate of Cov([ﬁTﬁT]Hb), where b = [b], ..., by by, ..., bt[(,]T
(Zhang et al., 1998). Although this quantity is currently not supported by the mixed model packages,
direct computation based on the closed-form solution (Robinson, 1991)

9= (CR'C+D)"'C"R y,

0 0

for & = (3,207, where C = [X|Zy], D = [0 o

], G = Cov(b), and R = Cov(ylb), is

straightforward.



342 B. A. COULL ET AL.

4. INFERENCE

To assess the significance of the estimate of interest E and the estimate of the serial correlation
parameter p, one can use the normality of these estimates and compare the magnitude of these estimates
to their corresponding standard errors. Other questions of interest relate to the variance components in
the model. For instance, both the null hypothesis of a homogeneous PM; ¢ effect (across the population of
schoolchildren) and the null hypotheses of linearity for the smooth functions f and g are special cases of
model (3.6) in which variance components are zero.

Specifically, consider the seasonality effect in model (3.6). The test of linearity corresponds to

S
Hi:02>0. 4.7

Denote the maximum likelihoods under model (3.6) and that model with osz = 0as Ly and L respectively.
Because the null hypothesis places the value of the variance component on the boundary of the parameter
space, likelihood ratio theory for (4.7) is nonstandard. At first glance, it would appear that one could apply
the asymptotic theory of Self and Liang (1987) that states that under Hy and normal homoscedastic errors,
the distribution of the likelihood ratio statistic / = —2(InLy — InL) is the same as that of

Z21(Z > 0),

where Z is a standard normal random variable and I is the indicator function. That is, the distribution
of the likelihood ratio statistic is a 50 : 50 mixture of 0 and a X12 distribution. This asymptotic theory,
however, is not directly applicable in the additive mixed model context because this work is based on
independent observations, and the random effects {b‘,i} and {b,t(} induce dependence among observations
on different subjects. Thus, theory on hypothesis testing in additive models is not well developed, and is
an area of active research.

As a result, we use the parametric bootstrap (Efron and Tibshirani, 1993) to assess the significance
of variance components relating to the questions of interest in the Utah Valley study. In particular, we
generate observations from a null distribution F() for the data under Hj. Given generated data sets yy,
b =1, ..., B, we compute the likelihood ratio statistic, I, for each data set and estimate the significance
level of / by

SB LI = 1)

ﬁboot = B

As noted by Efron and Tibshirani (1993), the choice for fo should be a distribution that obeys Hy and is
most reasonable for the observed data. In the additive mixed model context, we generate data from the
model (3.6) under Hy with the maximum likelihood estimates under the null model plugged in for the
unknown parameters; that is, for testing (4.7), we generate data from the model

K
Vij =&+ Ui + B+ Vox; +38s; + 7t + Y b(tj — k)4 + & (4.8)
k=1

where U; i.i.d. N(0,52), V; i.i.d. N(0,52), bl i.i.d. N(0,67), and
&ij = Pei j—1 + &ij,

with &;; 1.i.d. N (O, 652). Here, the tilde represents the MLE under the null model. Methods for testing other
variance components in the model follow analogously.
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Table 1. Results of likelihood ratio tests between pairs of models for testing stated

hypotheses
P-value
Null hypothesis  Alternative hypothesis —2log(LR) Self and Liang Bootstrap
f Linear f Smooth 0.02 0.444 0.275
g Linear g Smooth 1.30 0.127 0.045
02=0 02 #0 5.38 0.010 0.005

5. ANALYSIS OF UTAH VALLEY DATA

In view of the considerations described Section 3 we now consider the model

yij =+ Ui+ B+ Vixj+ f(sj) +8@)) + &ij,
U; o2 0
6T 2 e

for the Utah Valley data. We fit this model and various sub-models to assess the presence of

(1) nonlinear temperature and seasonal effects,
(2) autocorrelation,
(3) subject specific PM; effects.

Table 1 shows model comparisons based on the likelihood ratio tests of Section 4. P-values are based
on both naive application of the asymptotic theory of Self and Liang (1987) and a bootstrap hypothesis
test with B = 200. We note that in all cases the naive asymptotic approach is conservative, an observation
that agrees with results of Verbyla et al. (1999) in the smoothing spline context. The test for linearity
of g provides moderate evidence that, after controlling for other factors in the model, the effect of low
temperature on a child’s PEF is nonlinear, whereas the analogous test for f suggests that the effect of day
in season is linear. Figure 1 shows a plot of the predicted lowest temperature and seasonality effects on a
child’s PEF and 95% pointwise confidence bands.

Table 2 shows the estimated mean PM1 ¢ slope, AR(1) correlation, and variance components and their
associated standard errors. The large value for 33 reflects the large variability in the mean PEF values
for the 41 subjects. The estimate Eindicates a modest yet statistically significant negative mean effect of
PM;q on children’s PEF, a result that is consistent with the population-averaged analyses of Pope et al.
(1991). However, results from the likelihood ratio test Hy : o, = 0 in Table 1 yields strong evidence of
population heterogeneity with respect to PM; o response. Figure 2, which shows a kernel density estimate
of the predicted values ‘71', demonstrates this heterogeneity. This plot and Figure 3, which shows normal
probability plots of the predicted values U; and V;, suggest that the distribution of the random slopes is
skewed with three subjects exhibiting a strong negative reaction to PMjg. The estimated AR(1) parameter
© and associated standard error confirm the presence of residual correlation above that modelled via {U;}
and {V;}.

Finally, we examine the sensitivity of conclusions to model assumptions. First, to check the plausibility
of a linear PM¢ effect on PEF, we fit more general models leaving the form of this effect unspecified.
REML estimation for this model selected the linear form for the PM;q effect, with estimated variance
component associated with this smooth term equal to zero. Second, we remark that, since both the smooth
term for f(s;) and the autoregressive process ¢;; = pg; j—1 + & reflect PEF associations over time,
estimates of these processes are not independent. For the Utah Valley data, for instance, Figure 4 shows
the predicted curve f(-) given model (3.6) and independent errors.
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Fig. 1. Fitted low temperature and day number effects for model (3.6) with AR(1) errors.

Table 2. Results of fitting full model to Utah

Valley data
Parameter Estimate Standard error

B —0.070 0.025
o 0.510 0.014
ol 2630 598

ol 0.009 0.005
o2 0.007 0.011
o? < 0.001 0.004

The difference between this plot and the second plot in Figure 1 is the effect of the correlated error
assumption on the estimated day in season effect. Although we report the estimate from the AR(1)
model (based on the significance of p), the choice has little practical implication in the current study
as the difference in the estimate of interest, ,4’3\, is minimal (—0.070 versus —0.086) and does not change
the substantive conclusions of the analysis. Third, one might expect a child’s baseline PEF level and
susceptibility to particulate matter to be correlated, suggesting the formulation

6L ]
Vi Ou0yPu,v oy

for the random effects. SAS memory requirements made fitting this model using REML infeasible. How-
ever, minimum variance quadratic unbiased estimation (Searle et al., 1992) of the variance components
yields an estimated mean PM g effect of 3 = —0.068 (SE = 0.025), demonstrating that conclusions are
also robust to the assumption of independence for the random effects.

6. DISCUSSION

The analyses in this paper represent flexible methods for accounting for both the usual correlations
encountered in longitudinal data and complex covariate effects. The use of penalized splines affords
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Fig. 3. Normal probability plots of predicted values l7, and f/\,

several advantages over smoothing splines. In particular, penalized splines yield (1) a simpler mixed
model formulation, (2) low-rank smoothers that allow one to fit the models to much larger problems,
and (3) direct additive model fitting without the backfitting algorithm. One might question the subjectivity
involved in the choice of the number and placement of knots. However, it has been our experience that
penalized regression spline fitting is quite insensitive to the choice of knots. For instance, in the current
respiratory health application, refitting the models after both decreasing and increasing the number of
knots by 50% resulted in virtually no change in any of the model statistics in Tables 1 and 2. In the
context of the Utah Valley study, this penalized spline approach yields moderate evidence of a nonlinear
effect of low temperature on pulmonary function.

As noted in the Introduction, the National Research Council has made identifying which persons are
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Fig. 4. Fitted day number effect for model (3.6) with independent errors.

particularly susceptible to particulate air pollution a high priority. The analyses presented in this article
directly contribute toward this goal by indicating that there is in fact population heterogeneity in response
to PMip. In particular, these results show that there are three subjects in the Utah Valley study who
exhibited a particularly acute response to PM1 . This finding of heterogeneity in pulmonary responses to
particulate air pollution is new. A previous investigation of this question (Brunekreef et al., 1991) reported
heterogeneity in responses to ozone, but not to particles. However, this result was based on analyses that
involved only a few measurements of lung function and particulate air pollution per subject. In addition,
these analyses assessed heterogeneity using the approach of Korn and Whittemore (1979), whereby one
fits fixed, subject-specific slopes and then examines the resulting estimates. This approach is less efficient
than the mixed model approach used here.

This finding of response heterogeneity suggests that further research seeking to identify the cause of
this susceptibility may be worthwhile. Such research could provide valuable insight into the mechanisms
underlying the effects of particles. This determination of mechanism could in turn help explain additional
sources of response heterogeneity, since impaired pulmonary function may be life-threatening in persons
with certain diseases (e.g. Sunyer et al., 2000). In this vein, one can use results from the additive mixed
model fits to investigate what subject characteristics might explain response heterogeneity. Specifically,
one can model the empirical Bayes estimates of subject-specific PM1( slopes as a function of other
demographic data (Waternaux et al., 1989). Analysing the Utah Valley PM; ( slopes in this way suggests
that the limited demographic information available in the Utah Valley study (i.e. age, gender, medication)
does not explain the heterogeneity in PM; ¢ sensitivity among the schoolchildren population, but illustrates
the approach that would be available in a richer data set.

We also note that the Utah Valley study recorded only outdoor measurements of PM;,, and not
personal exposures. Mage et al. (1999) showed that because such measures are correlated only with
personal exposure to PM; ¢ of outdoor origin, one must interpret such outdoor measurements as surrogates
for only the ambient portion of personal PM; exposure. Even with this careful interpretation, the use of
such a surrogate for the true personal exposure to ambient particles results in a type of measurement error.
When interest lies in the population averaged effect of air pollution, this measurement error is well known
to bias the estimate of the overall effect toward the null (Carroll et al., 1995). Based on recent studies
(Mage et al., 1999; Zeger et al., 2000), we expect this bias to be of the order of 25%.
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Because we are also interested in the random slopes for PM; o, the situation is more complicated in that
some of the subject heterogeneity in response to PM; y may arise from variation in subject-specific slopes
between personal exposure to ambient PM; g and the outdoor concentrations. However, three factors in the
Utah Valley study serve to reduce, but not eliminate, this variation in slopes between personal and outdoor
concentrations. First, since subjects in the study are students at the same school, they share the same indoor
environment for much of the day. Second, the schoolchildren spend more time outdoors than adults, and
this environment is also homogeneous for all children in the study. Finally, Sarnat et al. (2000) showed
that the principal determinant of this variation in slopes between outdoor and personal concentrations is
the degree of ventilation in the indoor environment, and that such ventilation is heavily influenced by the
amount of time the windows are open. Since the study was conducted in a mountain community in the
winter, windows were likely to be closed at all times in most if not all of the children’s homes.
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