Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Evaluating Anthropogenic Impacts Along the Land-Ocean Continuum Using Silica

EPA Grant Number: FP917238
Title: Evaluating Anthropogenic Impacts Along the Land-Ocean Continuum Using Silica
Investigators: Carey, Joanna
Institution: Boston University
EPA Project Officer: Packard, Benjamin H
Project Period: September 1, 2010 through August 31, 2013
Project Amount: $111,000
RFA: STAR Graduate Fellowships (2010) RFA Text |  Recipients Lists
Research Category: Fellowship - Water Quality: Coastal and Estuarine Processes , Academic Fellowships

Objective:

Anthropogenic activities have greatly altered the global fluxes of nitrogen (N) and phosphorus (P) to coastal receiving waters. While N and P have appropriately received much research attention, another important nutrient, silica (Si), has largely gone unexamined and thus, Si cycling at the land-sea interface remains poorly understood. The purpose of this research is to examine how land use change alters the export of Si to New England estuaries.

Synopsis:

Excess nitrogen and phosphorus in relation to silica can lead to a silica starved system, stimulating a shift in phytoplankton species composition from diatom to non-diatom species and altering tropic interactions. This research will quantify the impact of historic and current land use change on silica export from the terrestrial to the aquatic ecosystem and determine the relationship between current watershed land use and estuarine phytoplankton species composition and abundance.

Approach:

This funding will quantify and characterize the type (dissolved vs. particulate) of Si, as well as N and P, exported via rivers from several New England watersheds with contrasting land use characteristics. In order to directly link watershed characteristics and downstream ecosystem response, concurrent phytoplankton composition and abundance measurements will be made in the receiving estuary (Plum Island Sound, MA). In addition, river sediment cores and historical land use data will help establish how the relationship between land use and watershed Si flux has changed in the recent past.

Expected Results:

This research will determine how land use change alters the export of Si via rivers, with attention to behavior of Si in relation to N and P and the impacts of such nutrient ratios on phytoplankton species composition in the receiving estuary. The resulting relationships between land use, river nutrient stoichiometry and phytoplankton species will provide new and critical insights into silica cycling at the terrestrial-aquatic interface.

Potential to Further Environmental/Human Health Protection:

Excess Nitrogen and Phosphorus can lead to Si-starvation in coastal waters, causing a shift in phytoplankton species composition from diatom to non-diatom species. The non-diatom species can be harmful algae blooms, such as red tides, which can alter higher trophic levels and, in some cases, are dangerous to human health. This research will provide important information for the management of coastal ecosystems.

Supplemental Keywords:

silica, eutrophication, land use, non-point source pollution, phytoplankton, diatoms, watershed, New England, Plum Island Sound, nutrient ratios, nitrogen, phosphorus,

Progress and Final Reports:

  • 2011
  • 2012
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.