Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Characterization of Highly Oxygenated Organic Compounds and Organosulfates in Atmospheric Particulate Matter

EPA Grant Number: FP917189
Title: Characterization of Highly Oxygenated Organic Compounds and Organosulfates in Atmospheric Particulate Matter
Investigators: Isaacman, Gabriel A.
Institution: University of California - Berkeley
EPA Project Officer: Lee, Sonja
Project Period: September 1, 2010 through August 31, 2013
Project Amount: $111,000
RFA: STAR Graduate Fellowships (2010) RFA Text |  Recipients Lists
Research Category: Academic Fellowships , Fellowship - Clean Air

Objective:

This project aims to expand the ability to characterize both highly oxygenated and sulfur-containing atmospheric oxidation products of prevalent volatile organic compounds. It also will attempt to quantify the extent to which interaction between anthropogenic and biogenic emissions to the atmosphere leads to formation of secondary aerosol in regions like the southeastern United States, where emissions from both sources are high.

Synopsis:

Specific compounds in atmospheric particulate matter (“smog”) can be used to understand its sources and formation. This project will study the variability over the course of the day of such “marker compounds” using a custom instrument that has a better time resolution than typical techniques. The applicant proposes to expand current capabilities of this instrument to include the detection of compounds found in more aged air, which make up a significant fraction of all particulate matter.

Approach:

The composition of organic atmospheric aerosol has been characterized to date primarily through the use of filter collection and analysis. However, this approach does not provide an understanding of diurnal variability of individual compounds, which can be used to understand sources and formation processes. Therefore, this project will seek to improve a recently designed custom instrument, the Thermal Desorption Aerosol Gas Chromatograph (TAG). The range of compounds detectable by TAG will be expanded to include markers of oxidized and aged air through the use of “derivatization,” where a chemical reaction will be employed to change the structure of analyzed air in such a way to allow detection. The exact reaction is not yet known and will require significant experimentation. Following development of these methods, the instrument will be deployed to the field to understand the sources of particulate matter in polluted and/or non-polluted areas.

Expected Results:

Highly oxygenated compounds are known to be a significant fraction of atmospheric aerosol but cannot be easily characterized with high time resolution using current methods. This work will address this issue, providing better knowledge about the diurnal variability of these compounds. Such knowledge can and will be used for source apportionment as well as studies into the products of known precursor gas-phase compounds. This work will better constrain the causes of some air pollution, specifically small particulate matter (PM2.5), one of EPA’s six “criteria pollutants.”

Potential to Further Environmental/Human Health Protection:

Atmospheric aerosol affects human health and climate, and these effects vary based on the composition of the aerosol. This research seeks to understand the composition of aerosol, thus understanding its effects. Furthermore, by having high time resolution in these measurements, the sources and formation processes can be better understood, assisting in future mitigation efforts.

Supplemental Keywords:

air pollution, aerosol, particulate matter, PM2.5, criteria pollutants, derivatization, volatile organic compounds,

Progress and Final Reports:

  • 2011
  • 2012
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.