Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Time-Series Modeling of Integrated Wind/Gas/Battery Systems for Minimization of CO2 and NOx Emissions

EPA Grant Number: FP917157
Title: Time-Series Modeling of Integrated Wind/Gas/Battery Systems for Minimization of CO2 and NOx Emissions
Investigators: Hittinger, Eric S
Institution: Carnegie Mellon University
EPA Project Officer: Hahn, Intaek
Project Period: August 25, 2010 through August 24, 2013
Project Amount: $111,000
RFA: STAR Graduate Fellowships (2010) RFA Text |  Recipients Lists
Research Category: Academic Fellowships , Fellowship - Science & Technology for Sustainability: Energy

Objective:

In order to reduce carbon emissions, increasing amounts of renewable electricity generation will be required. But most renewable energy systems, such as wind and solar, have variable power output and require dispatchable generation or energy storage to provide fill-in energy. This study examines the costs and emissions of generation/energy storage systems designed to support increasing amounts of wind generation.

Synopsis
There is a growing public and private interest in renewable energy deployment for a variety of reasons, such as carbon emission reduction and energy independence. But the variability of such technologies as wind and solar generation is a formidable barrier to large-scale deployment. This research examines the costs and emissions of specific systems providing fill-in power for wind farms and seeks to identify ways to affordable compensate for wind variability without increased emissions.

Approach:

This study will use time-series analysis of wind output, coupled with realistic modeling of gas generators and energy storage devices, for a realistic view of the potential capabilities of a composite wind/natural gas/energy storage system. By studying these composite systems with realistically modeled operation at a fine time resolution (10 seconds), we can determine the costs of operation, emissions, and operational parameters of variously composed wind/gas/storage generation blocks. This data will help identify systems that have low emissions at a reasonable cost and can help inform policy and technology decisions.

Expected Results:

Firstly, and most basically, this study will demonstrate that modeling varying and compensating resources using shorter time scales produces results notably different than modeling them in longer blocks. Secondly, it should demonstrate that a small amount of energy storage co-located with the fluctuating resources will reduce both the average cost of power and the emissions from compensating resources. Thirdly, a fully operational model as described above can immediately be used to study a number of effects related to these composite systems, such as the effect of emissions prices or improvement of energy storage technology.

Potential to Further Environmental/Human Health Protection
Deploying renewable electricity generation is an important part of reducing carbon emissions. Thus, addressing the barriers to large-scale renewable generation is necessary to achieving a low-carbon electrical grid. This study examines methods to accommodate increased wind energy at a reasonable cost while using established technologies.

Supplemental Keywords:

wind integration, energy storage, carbon emissions, wind variability, renewable portfolio standards,

Progress and Final Reports:

  • 2011
  • 2012
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.