Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Constraining ammonia emissions and PM2.5 control efficiencies with a new combination of satellite data, surface observations and adjoint modeling techniques

EPA Grant Number: R834559
Title: Constraining ammonia emissions and PM2.5 control efficiencies with a new combination of satellite data, surface observations and adjoint modeling techniques
Investigators: Henze, Daven K
Institution: University of Colorado at Boulder
EPA Project Officer: Chung, Serena
Project Period: May 1, 2010 through April 30, 2013 (Extended to April 30, 2014)
Project Amount: $249,942
RFA: Novel Approaches to Improving Air Pollution Emissions Information (2009) RFA Text |  Recipients Lists
Research Category: Air Quality and Air Toxics , Air

Description:

The project goal is to reduce existing uncertainties in current estimates of NH3 emissions in order to better characterize and control distributions of fine particulate matter (PM2.5) and reactive nitrogen.

Objective:

  1. Quantify the magnitude and variability, both geographical and seasonal, of U.S. NH3 emissions at a high spatial resolution.
  2. Provide detailed estimates of PM2.5 control efficiencies and how they will evolve owing to regulations that alter key balances among inorganic particulate species.

Approach:

The overall approach is to constrain NH3 emissions using new remote sensing observations (TES NH3 retrievals), existing speciated surface observations (IMPROVE, NADP/NTN), and the GEOS-Chem adjoint modeling tools recently developed under a previous EPA-STAR award (R832158). Capabilities and limitations for constraining specific NH3 sources and variability with this data at a high resolution will first be assessed via inverse modeling tests using "pseudo" observations (generated by the model). The inverse model will then be applied over North America using real observations from several recent years. The resulting constraints on NH3 inventories will be evaluated through cross validation with independent data sets and qualified with calculation of uncertainty reductions. Lastly, the impacts of constraining NH3 emissions on control strategies will be determined through novel application of the adjoint model as a sensitivity tool, pinpointing nonattainment to influences from specific emissions locations, sectors, and sources.

Expected Results:

Benefits of accomplishing these goals will be to further our overall knowledge of the environmental impacts of NH3 emissions by affording better estimates of incidents of excessively harmful PM2.5 levels using air quality models as well as reducing uncertainty in quantifying the sources and fate of ecologically disruptive levels of reactive nitrogen. NH3 inventory improvements will also enhance calculated emission control efficiencies by more precisely accounting for the response of PM2.5 concentrations to existing or proposed mitigation strategies, thereby targeting emissions controls that minimize risk and cost while maximizing societal benefits.

Publications and Presentations:

Publications have been submitted on this project: View all 49 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 10 journal articles for this project

Supplemental Keywords:

environmental policy, air quality regulations, aerosols, data assimilation, 4D-Var, pubic health, eutrophication,

Progress and Final Reports:

  • 2010 Progress Report
  • 2011 Progress Report
  • 2012 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2012 Progress Report
    • 2011 Progress Report
    • 2010 Progress Report
    49 publications for this project
    10 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.