Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Assessing the Impact of a Warmer Climate on Stream Water Quality Across theMountainous Western United States.

EPA Grant Number: R834191
Title: Assessing the Impact of a Warmer Climate on Stream Water Quality Across theMountainous Western United States.
Investigators: Stewart-Frey, Iris , Maurer, Edwin
Institution: Santa Clara University
EPA Project Officer: Packard, Benjamin H
Project Period: September 1, 2009 through August 31, 2012 (Extended to August 31, 2013)
Project Amount: $250,000
RFA: Consequences of Global Change for Water Quality (2008) RFA Text |  Recipients Lists
Research Category: Ecological Indicators/Assessment/Restoration , Climate Change , Watersheds , Aquatic Ecosystems , Water

Description:

(1) The objective of the proposed work is to examine the impact of projected climatic changes on the near-surface hydrology and water quality across the mountainous western United States. (2) The hypothesis is that throughout the mountainous western U.S., climatic changes projected through the end of the century are likely to impact the near-surface hydrologic response, including water quality, such that water supply and aquatic ecosystems are significantly affected. (3) The proposed study will develop a modeling protocol that links output from 16 GCMS and three (high, medium, and low) emissions and water quality to a continous time hydrologic and water quality model (SWAT), capable of handling snowmelt, infiltration, shallow subsurface flow and groundwater recharge, and streamflow on the subbasin to subcontinental scale. The modeling protocol will be calibrated and validated for the Sierra Nevada (CA) mountain range and subsequently be applied to the western U.S. A sensitivity simulation will be conducted to identify the sensitivity of the simulated water quality variables to the simulated two-way coupling of land and atmosphere. The impact of projected climate change hydrologic and water quality parameters on different special and temporal scales, across GCM models and emission scenarios, and for region-to-region differences in vulnerability will be assessed and the impact on water supply and aquatic ecosystems will be evaluated; thus the proposed work is consistent with the requirements of the funding solicitation. The results of this effort will be a large publicly accessible dataset of simulated hydrologic and water quality parameters for 16 GCMs, 3 emissions scenario, a historic (1950-2008) and projected (2010- 2099) time period, daily, monthly, yearly, and decadal time scales, and subbasin (Sierra Nevada (CA)) to subcontinental (western United States) spacial scales. The analysis and data will be useful for watershed management, risk assessment, and policy planning.

Objective:

The objective of the proposed work is to examine the impact of projected climatic changes on the near-surface hydrology and water quality across the mountainous western United States. The hypothesis is that throughout the mountainous western U.S., climatic changes projected through the end of the century are likely to impact the near-surface hydrologic response, including water quality, such that water supply and aquatic ecosystems are significantly affected.

Approach:

The proposed study will develop a modeling protocol that links output from 16 GCMS and three (high, medium, and low) emissions and water quality to a continous time hydrologic and water quality model (SWAT), capable of handling snowmelt, infiltration, shallow subsurface flow and groundwater recharge, and streamflow on the subbasin to subcontinental scale. The modeling protocol will be calibrated and validated for the Sierra Nevada (CA) mountain range and subsequently be applied to the western U.S. A sensitivity simulation will be conducted to identify the sensitivity of the simulated water quality variables to the simulated two-way coupling of land and atmosphere. The impact of projected climate change hydrologic and water quality parameters on different special and temporal scales, across GCM models and emission scenarios, and for region-to-region differences in vulnerability will be assessed and the impact on water supply and aquatic ecosystems will be evaluated; thus the proposed work is consistent with the requirements of the funding solicitation.

Expected Results:

The results of this effort will be a large publicly accessible dataset of simulated hydrologic and water quality parameters for 16 GCMs, 3 emissions scenario, a historic (1950-2008) and projected (2010- 2099) time period, daily, monthly, yearly, and decadal time scales, and subbasin (Sierra Nevada (CA)) to subcontinental (western United States) spacial scales. The analysis and data will be useful for watershed management, risk assessment, and policy planning.

Publications and Presentations:

Publications have been submitted on this project: View all 26 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 10 journal articles for this project

Supplemental Keywords:

water, water quantity, water quality, watersheds, groundwater, soil, global climate, hydrology, modeling, West, California (CA), climate models;, RFA, Air, climate change, Air Pollution Effects, Atmosphere, environmental monitoring, water resources, climate models

Progress and Final Reports:

  • 2010 Progress Report
  • 2011 Progress Report
  • 2012 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2012 Progress Report
    • 2011 Progress Report
    • 2010 Progress Report
    26 publications for this project
    10 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.