Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Small Scale Ethanol Drying

EPA Contract Number: EPD08052
Title: Small Scale Ethanol Drying
Investigators: Majumdar, Sudipto
Small Business: Compact Membrane Systems Inc.
EPA Contact: Richards, April
Phase: II
Project Period: May 1, 2008 through April 30, 2011
Project Amount: $225,000
RFA: Small Business Innovation Research (SBIR) - Phase II (2008) Recipients Lists
Research Category: Small Business Innovation Research (SBIR) , SBIR - Agriculture and Rural Community Improvement

Description:

This program exceeded all key milestones. Using cellulose Waste, CMS demonstrated novel ethanol drying membranes via small scale dephlegmation process that yields fuel grade ethanol (FGE) at a lower cost than large switch grass ethanol plants. This success yields positive value for cellulose waste. We achieved targeted EPA goals of developing low cost environmentally friendly systems to enhance recovery of waste streams. In addition to this success we have lined up key partners for both the fabrication of membrane systems as well as field testing in related applications.

In Phase I, we fabricated chemically resistant hollow fiber (HF) membrane modules that had desired chemical resistance and transport properties consistent with the goals associated with the final ethanol drying step in small scale manufacturing processes. There was success with flat sheet systems for ethanol-water separation and though HF and flat sheet systems provided excellent performance results, HF is preferred in Phase II. This is because of excellent relationships with commercial partners combined with associated better design and cost features. Using the HF membranes prepared in the earlier tasks, we evaluated these materials specifically under conditions consistent with small scale ethanol manufacturing sites for both liquid phase and vapor phase separation of water from ethanol. We obtained excellent flux and separation. This included very high water transport rates and very high water-ethanol separations factors. This excellent flux and separation in combination with stability was demonstrated over a wide range of operating conditions.

Long term testing showed the membranes had excellent stability. This is consistent with parallel result, and also consistent with the chemistry of the CMS materials. Reviewers had concerns related to CMS membrane water/ethanol selectivity but tests in Phase I showed excellent water/ethanol separation which likely related to the unique chemistry of the CMS membranes.

We took lab results and put them into the small scale membrane module/dephelmation system published by Leland Vane from the EPA and comparing to published results from the Department of Energy on FGE costs. We demonstrated CMS membrane drying costs were actually less than large scale molecular sieve driers. Most important results showed that waste stream cellulose stream actually had significant positive value ($16-$18/ton).

Phase II will build and evaluate pilot system. Fortunately we have established a number of key relationships with membrane suppliers, ethanol engineering design firms and the EPA test sites. This positions CMS well for both Phase II success and subsequent commercialization.

Publications and Presentations:

Publications have been submitted on this project: View all 2 publications for this project

Supplemental Keywords:

Sustainable Industry/Business, RFA, Scientific Discipline, Technology for Sustainable Environment, Sustainable Environment, Environmental Engineering, biofuel, alternative energy source, bio-based energy, cellulose biomass, alternative fuel

Progress and Final Reports:

  • Final Report

  • SBIR Phase I:

    Small-Scale Ethanol Drying  | Final Report

    Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • SBIR Phase I | Final Report
    2 publications for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.