Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Development of Bio-Based Molecular Technologies for Removal and Real-Time Monitoring of Toxic Metals

EPA Grant Number: F07D10079
Title: Development of Bio-Based Molecular Technologies for Removal and Real-Time Monitoring of Toxic Metals
Investigators: Adams, Joshua P.
Institution: Mississippi State University
EPA Project Officer: Hahn, Intaek
Project Period: August 1, 2007 through July 31, 2010
RFA: STAR Graduate Fellowships (2007) RFA Text |  Recipients Lists
Research Category: Academic Fellowships , Fellowship - Forestry , Hazardous Waste/Remediation

Objective:

Environmental pollutants pose health risks such as cancer. The overall goal is to develop an understanding of how trees interact with their environment at the molecular level and use this knowledge to develop bio-based molecular technologies to solve pollution problems. To accomplish the overall goal, the specific objectives are to: 1] Develop a tree with zinc hyper-accumulation ability through gene transfer from Thlaspi caerulescens to poplar for use in bioremediation; and 2] Harness fluorescent energy transfer to provide a tree that monitors metal contamination in soil/water.

Approach:

Development of a high-biomass, zinc hyper-accumulator will involve genetic engineering. Genes involved in metal transport and detoxification from the metal hyper-accumulating T. caerulescens will be identified and inserted into poplar. Engineered trees will be grown in the presence of various zinc concentrations, harvested, and measured for zinc abundance. Development of a tree with metal monitoring capabilities will require fusion of fluorescent proteins to proteins involved in metal uptake and transport. This will involve vector construction, sequencing, gene transformation, and metal assays in poplar. Poplar is used because it is a high-biomass species whose genome has been sequenced and gene transformation procedures have been well-established.

Expected Results:

Transformation of heavy-metal related genes from a hyper-accumulator to a high-biomass species is expected to promote a zinc hyper-accumulating phenotype in the normally non-hyper-accumulating poplar. Coupling fluorescence with heavy metal proteins is anticipated to allow monitoring of metal influx in the tree via light emissions. Consequently, this project is expected to provide high-biomass species with an accumulation and monitoring phenotype which is pursuant to a goal of ensuring plant, animal, and human safety.

Supplemental Keywords:

Pollution, heavy metal, zinc accumulation, bioremediation, Thlaspi caerulescens, Populus, poplar, environmental remediation,, Scientific Discipline

Progress and Final Reports:

  • 2008
  • 2009
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.